A Stochastic Disturbance of Particle Swarm Optimization for K-Means Clustering Method

Article Preview

Abstract:

This paper presents a hybrid-clustering algorithm that is a stochastic disturbance of particle swarm optimization (PSO) for K-means clustering method (SDPSO-K). The proposed algorithm can improve the particle global searching ability in PSO to avoid the K-means disadvantage of being easily trapped in a local optimal solution and to save the expensive computational cost of PSO clustering. The performance of the SDPSO-K, compared with three recently developed modified PSO techniques and related clustering algorithms for six datasets, indicates that the SDPSO-K algorithm is clearly and consistently superior in terms of precision and robustness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

10-15

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhao and G. Karypis: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, vol 55(, 2004), pp.311-331.

DOI: 10.1023/b:mach.0000027785.44527.d6

Google Scholar

[2] M. R. AnderbergIn, Cluster Analysis for Applications. Academic Press, New York, US. (1973).

Google Scholar

[3] Y. Kao, E. Zahara and I. Kao: A hybridized approach to data clustering, Expert Systems with Applications, vol. 34(2008), pp.1754-1762.

DOI: 10.1016/j.eswa.2007.01.028

Google Scholar

[4] S, Paterlini and T. Krink: Differential evolution and particle swarm optimization in partitional clustering. Computational Statistics and Data Analysis, vol. 50(2006), pp.1220-1247.

DOI: 10.1016/j.csda.2004.12.004

Google Scholar

[5] M. Omran, A. Salman and A. P. Engelbrecht: Image Classification using Particle Swarm Optimization. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore. vol. 1(2002), pp.370-374.

DOI: 10.1142/9789812561794_0019

Google Scholar

[6] D. M. Van and A. P. Engelbrecht, Data clustering using particle swarm optimization, Pro. of the 2003 IEEE Congress on Evolutionary Computation, pp.215-220, Piscataway, NJ(2003).

DOI: 10.1109/cec.2003.1299577

Google Scholar

[7] X. Cui and T. E. Potok, Document clustering analysis based on hybrid PSO+K-means algorithm, Journal of Computer Sciences, vol5(2005), pp.27-33.

Google Scholar

[8] J. Liu, L. Han and L. Hou, Cluster Analysis Based on Particle Swarm Optimization Algorithm. Systems Engineering-Theory & Practice, vol. 25(2005), pp.54-58.

Google Scholar

[9] R. A. Krohling, F. Hoffmann and L. dos Santos Coelho Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution, IEEE Proc. Congress of Evolutionary Computation, Portland, Oregon, Vol. 1(2004), pp.959-964.

DOI: 10.1109/cec.2004.1330965

Google Scholar

[10] J. Kennedy, Bare bones particle swarms, in Proc. IEEE Swarm Intell. Symp. Indianapolis, IN, (2003), pp.80-87.

Google Scholar

[11] N. Higashi and H. Iba, Particle swarm optimization with Gaussian mutation, in Proc, IEEE Swarm Intelligence Symp., Indianapolis, pp.72-79(2003).

DOI: 10.1109/sis.2003.1202250

Google Scholar

[12] G. D. Magoulas and A. D. Anastasiadis Approaches to Adaptive Stochastic Search Based on the Nonextensive q-Distribution, International Journal of Bifurcation and Chaos. Vol. 16(2006), no. 7, p.2081-(2091).

DOI: 10.1142/s0218127406015921

Google Scholar

[13] J Kennedy and Eberhart R, Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks (ICNN), Perth, p: 1942-1948(1995).

DOI: 10.1109/icnn.1995.488968

Google Scholar

[14] C. Maurice and J. Kennedy, the Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. Transactions on Evolutionary Computation, pp.58-73(2002).

DOI: 10.1109/4235.985692

Google Scholar

[15] D. N. Jeyakumarb, T. Jayabarathia and T. Raghunathana, Particle swarm optimization for various types of economic dispatch problems, International Journal of Electrical Power & Energy Systems, vol. 28, pp.36-42(2006).

DOI: 10.1016/j.ijepes.2005.09.004

Google Scholar