On Public-Key Encryption Scheme Based on Chebyshev Maps

Article Preview

Abstract:

Due to the exceptionally desirable properties, Chebyshev polynomials have been recently proposed for designing public key cryptosystems. However, some proposed schemes were pointed out to be insecure and unpractical. In this paper, we analyze their defects, discretize the Chebyshev maps, generalize properties of Chebyshev polynomials and design an improved scheme. Theoretical analysis shows that it possesses higher security than RSA and experimental results shows it can be implemented easily.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

1110-1114

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Baptista. Cryptography with chaos. Phys Lett A, Vol. 240 (1998), p.50.

Google Scholar

[2] S. Li, G. Chen, Wong K, Mou X, Cai Y. Baptista-type chaotic cryptosystems: problems and countermeasures. Phys Lett A, Vol. 332 (2004), p.368.

DOI: 10.1016/j.physleta.2004.09.028

Google Scholar

[3] K. Wong. A combined cryptographic and hashing scheme. Phys Lett A, 2003, 307: 292-298.

Google Scholar

[4] G. Álvarez, F. Montoya, M. Romera. Cryptanalysis of dynamic look-up table based chaotic cryptosystems. Phys Lett A, Vol. 326 (2004), p.211.

DOI: 10.1016/j.physleta.2004.04.018

Google Scholar

[5] Y. Chen, X. Liao. Cryptanalysis on a modified Baptista-type cryptosystem with chaotic masking algorithm. Phys Lett A, Vol. 342 (2005), p.89.

DOI: 10.1016/j.physleta.2005.05.048

Google Scholar

[6] G. Jakimoski, L. Kocarev. Differential and linear probabilities of a block-encryption cipher. IEEE Trans Circ Syst I, Vol. 1 (2003), p.121.

DOI: 10.1109/tcsi.2002.804549

Google Scholar

[7] G.R. Chen, Y. Mao. A symmetric image encryption scheme based on 3D chaotic cat maps. J Chaos, Solitons & Fractals, Vol. 21 (2004), p.749.

DOI: 10.1016/j.chaos.2003.12.022

Google Scholar

[8] L. Zhang, X. Liao, X. Wang. An image encryption approach based on chaotic Maps. Chaos, Solitons & Fractals, Vol. 3 (2005), p.759.

DOI: 10.1016/j.chaos.2004.09.035

Google Scholar

[9] G. Tang, X.F. Liao, Y. Chen. A novel method for designing S-boxes based on chaotic maps. Chaos, Solitons & Fractals, Vol. 2 (2005), p.413.

DOI: 10.1016/j.chaos.2004.04.023

Google Scholar

[10] R. Tenny, L. Tsimring. Additive Mixing Modulation for Public Key Encryption Based on Distributed Dynamics. IEEE Trans. Circuits Syst. I, Vol. 3 (2005), p.672.

DOI: 10.1109/tcsi.2004.842870

Google Scholar

[11] L. Kocarev, Z. Tasev. Public-key encryption based on Chebyshev maps. In Proc. 1-th Int. Circuit and Syst. Symp., Vol. 1 (2003), p.25.

DOI: 10.1109/iscas.2003.1204947

Google Scholar

[12] P. Bergamo, P. Arco. Security of public key cryptosystems based on Chebyshev polynomials. IEEE Trans. Circuits Syst. I, Vol. 7 (2005), p.1382.

DOI: 10.1109/tcsi.2005.851701

Google Scholar

[13] L. Kocarev, Sterjev M. Public key encryption scheme with chaos. Chaos, Vol. 4 (2004), p.1078.

DOI: 10.1063/1.1821671

Google Scholar

[14] X.F. Liao, X. Li, J. Peng, Chen G. A digital secure image communication scheme based on the chaotic Chebyshev map. Int. J. Commun. Syst. , Vol. 17 (2004), p.437.

DOI: 10.1002/dac.655

Google Scholar

[15] M. Joye. Recovering lost efficiency of exponentiation algorithms on smart cards. Electronics Letters, Vol. 19 (2002), p.1095.

DOI: 10.1049/el:20020748

Google Scholar

[16] D.G. Feng, D. Pei: An introduction to cryptography, (Science Press, Beijing 2001).

Google Scholar

[17] R. Lidl, Niederreiter H: Introduction to Finite Fields and Their Applications (Cambridge University Press, England 1994).

Google Scholar

[18] D.G. Feng: Cryptanalysis (Tsinghua Press, Beijing 2000).

Google Scholar

[19] I. Percival, Vivaldi F. Arithmetical properties of strongly chaotic motions. Physica D, Vol. 25(1987), p.105.

DOI: 10.1016/0167-2789(87)90096-0

Google Scholar

[20] W. Dai. Speed comparison of popular crypto algorithms, available online at : http: /www. eskimo. com/~weidai/benchmarks. html.

Google Scholar