[1]
M. Baptista. Cryptography with chaos. Phys Lett A, Vol. 240 (1998), p.50.
Google Scholar
[2]
S. Li, G. Chen, Wong K, Mou X, Cai Y. Baptista-type chaotic cryptosystems: problems and countermeasures. Phys Lett A, Vol. 332 (2004), p.368.
DOI: 10.1016/j.physleta.2004.09.028
Google Scholar
[3]
K. Wong. A combined cryptographic and hashing scheme. Phys Lett A, 2003, 307: 292-298.
Google Scholar
[4]
G. Álvarez, F. Montoya, M. Romera. Cryptanalysis of dynamic look-up table based chaotic cryptosystems. Phys Lett A, Vol. 326 (2004), p.211.
DOI: 10.1016/j.physleta.2004.04.018
Google Scholar
[5]
Y. Chen, X. Liao. Cryptanalysis on a modified Baptista-type cryptosystem with chaotic masking algorithm. Phys Lett A, Vol. 342 (2005), p.89.
DOI: 10.1016/j.physleta.2005.05.048
Google Scholar
[6]
G. Jakimoski, L. Kocarev. Differential and linear probabilities of a block-encryption cipher. IEEE Trans Circ Syst I, Vol. 1 (2003), p.121.
DOI: 10.1109/tcsi.2002.804549
Google Scholar
[7]
G.R. Chen, Y. Mao. A symmetric image encryption scheme based on 3D chaotic cat maps. J Chaos, Solitons & Fractals, Vol. 21 (2004), p.749.
DOI: 10.1016/j.chaos.2003.12.022
Google Scholar
[8]
L. Zhang, X. Liao, X. Wang. An image encryption approach based on chaotic Maps. Chaos, Solitons & Fractals, Vol. 3 (2005), p.759.
DOI: 10.1016/j.chaos.2004.09.035
Google Scholar
[9]
G. Tang, X.F. Liao, Y. Chen. A novel method for designing S-boxes based on chaotic maps. Chaos, Solitons & Fractals, Vol. 2 (2005), p.413.
DOI: 10.1016/j.chaos.2004.04.023
Google Scholar
[10]
R. Tenny, L. Tsimring. Additive Mixing Modulation for Public Key Encryption Based on Distributed Dynamics. IEEE Trans. Circuits Syst. I, Vol. 3 (2005), p.672.
DOI: 10.1109/tcsi.2004.842870
Google Scholar
[11]
L. Kocarev, Z. Tasev. Public-key encryption based on Chebyshev maps. In Proc. 1-th Int. Circuit and Syst. Symp., Vol. 1 (2003), p.25.
DOI: 10.1109/iscas.2003.1204947
Google Scholar
[12]
P. Bergamo, P. Arco. Security of public key cryptosystems based on Chebyshev polynomials. IEEE Trans. Circuits Syst. I, Vol. 7 (2005), p.1382.
DOI: 10.1109/tcsi.2005.851701
Google Scholar
[13]
L. Kocarev, Sterjev M. Public key encryption scheme with chaos. Chaos, Vol. 4 (2004), p.1078.
DOI: 10.1063/1.1821671
Google Scholar
[14]
X.F. Liao, X. Li, J. Peng, Chen G. A digital secure image communication scheme based on the chaotic Chebyshev map. Int. J. Commun. Syst. , Vol. 17 (2004), p.437.
DOI: 10.1002/dac.655
Google Scholar
[15]
M. Joye. Recovering lost efficiency of exponentiation algorithms on smart cards. Electronics Letters, Vol. 19 (2002), p.1095.
DOI: 10.1049/el:20020748
Google Scholar
[16]
D.G. Feng, D. Pei: An introduction to cryptography, (Science Press, Beijing 2001).
Google Scholar
[17]
R. Lidl, Niederreiter H: Introduction to Finite Fields and Their Applications (Cambridge University Press, England 1994).
Google Scholar
[18]
D.G. Feng: Cryptanalysis (Tsinghua Press, Beijing 2000).
Google Scholar
[19]
I. Percival, Vivaldi F. Arithmetical properties of strongly chaotic motions. Physica D, Vol. 25(1987), p.105.
DOI: 10.1016/0167-2789(87)90096-0
Google Scholar
[20]
W. Dai. Speed comparison of popular crypto algorithms, available online at : http: /www. eskimo. com/~weidai/benchmarks. html.
Google Scholar