Microprocessor-Based Control Using Local-Loop Approach in Robot Joint Movement

Article Preview

Abstract:

In recent years, the robot development has been fast expanding to many areas such as entertainment, home task, security, medical care, etc. Accordingly, this paper proposes a simple but reliable robot communication interface and local-loop control system based on RS232 and 8051 microprocessor, suitable use for various kinds of robot control. In this proposed scheme, the robot action commands stored in the database using C++ Builder can be transmitted from the Command-Transmission Microprocessor (CTM) and then received by the individual authorized Action-Processing Microprocessor (APM) via RS232. Real-time implementation results are presented to demonstrate the effectiveness of the proposed approach in term of robust, simple, flexible and efficient performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

764-771

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Franti, D. Tufis, S. Goschin, , M. Dascalu, P.L. Milea, G. Stefan, T. Balan, C. Slav, R. Demco, Virtual environment for robots interfaces design and testing, 2005 International Semiconductor Conference Proceedings (CAS 2005), Vol. 2 (2005).

DOI: 10.1109/smicnd.2005.1558827

Google Scholar

[2] C. T. Kim, T. Y. Choi, B. Choi, J. J. Lee, Robust estimation of sound direction for robot interface, 2008 IEEE International Conference on Robotics and Automation (ICRA 2008), pp.3475-3480.

DOI: 10.1109/robot.2008.4543742

Google Scholar

[3] Z. Tao, B. Zhu, L. Lee, D. Kaber, Service robot anthropomorphism and interface design for emotion in human-robot interaction, 2008 IEEE International Conference on Automation Science and Engineering (CASE 2008), pp.674-679.

DOI: 10.1109/coase.2008.4626532

Google Scholar

[4] B. Nan, M. Okamoto, T. Tsuji, A Hybrid Motion Classification Approach for EMG-Based Human–Robot Interfaces Using Bayesian and Neural Networks, IEEE Transactions on Robotics, Vol. 25,  Issue 3 (2009), pp.502-511.

DOI: 10.1109/tro.2009.2019782

Google Scholar

[5] F.E. Ritter, D. V. Rooy, R.S. Amant, K. Simpson, Providing user models direct access to interfaces: an exploratory study of a simple interface with implications for HRI and HCI, IEEE Transactions on Systems, Man and Cybernetics, Part A, Vol. 36, Issue 3 (2006).

DOI: 10.1109/tsmca.2005.853482

Google Scholar

[6] L. Zhang, Q. Huang, Y. Lu, T. Xiao, J. Yang, M. Keerio, Visual Tele-operation System for the Humanoid Robot BHR-02, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2006), pp.1110-1114.

DOI: 10.1109/iros.2006.281820

Google Scholar

[7] R.C. Taylor, C. Kapoor, Automatic generation of robot interface specifications and representations", 2004 IEEE International Conference on Robotics and Automation Proceedings (ICRA , 04), Vol. 2 (2004), pp.1511-1516.

DOI: 10.1109/robot.2004.1308038

Google Scholar

[8] S. H. Shin, D. Tesar, Analytical method for designing modular robot interfaces with high connection accuracy", 2004 IEEE International Conference on Robotics and Automation Proceedings (ICRA , 04), Vol. 2 (2004), pp.1746-1751.

DOI: 10.1109/robot.2004.1308076

Google Scholar

[9] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams, M. Bugajska, D. Brock, Spatial language for human-robot dialogs, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 34,  Issue 2 (2004).

DOI: 10.1109/tsmcc.2004.826273

Google Scholar

[10] L.M. Muoz, A. Casals, Improving the Human–Robot Interface Through Adaptive Multispace Transformation, IEEE Transactions on Robotics, Vol. 25,  Issue 5 (2009), pp.1208-1213.

DOI: 10.1109/tro.2009.2024790

Google Scholar

[11] N. Shirakura, M. Morita, J. Takeno, Development of a human interface for remote-controlled robots using an eye-tracking system, 2005 IEEE International Conference Mechatronics and Automation, Vol. 1 (2005), pp.351-356.

DOI: 10.1109/icma.2005.1626572

Google Scholar

[12] D. T. Nguyen, S. R. Oh, B. J. You, A framework for Internet-based interaction of humans, robots, and responsive environments using agent technology, IEEE Transactions on Industrial Electronics, Vol. 52,  Issue 6 (2005), pp.1521-1529.

DOI: 10.1109/tie.2005.858731

Google Scholar

[13] J. Kofman, W. Xianghai, T.J. Luu, S. Verma, Teleoperation of a robot manipulator using a vision-based human-robot interface, IEEE Transactions on Industrial Electronics, Vol. 52 (2005), pp.1206-1219.

DOI: 10.1109/tie.2005.855696

Google Scholar

[14] M. Mizukawa, S. Sakakibara, N. Otera, Implementation and applications of open data network interface 'ORiN', 2004 Annual Conference SICE, Vol. 2 (2004), pp.1340-1343.

Google Scholar

[15] M.O.F. Sarker, C. H. Kim, J. S. Cho, B. J. You, Development of a Network-based Real-Time Robot Control System over IEEE 1394: Using Open Source Software Platform, 2006 IEEE International Conference on Mechatronics (2006), pp.563-568.

DOI: 10.1109/icmech.2006.252588

Google Scholar

[16] X. Q. Yan, W. F. Li, D. F. Chen, A New Mechanism for Robots Control Based on Player/Stage", 2006 IEEE International Conference on Robotics and Biomimetics (ROBIO , 06), pp.750-754.

Google Scholar