Theoretical Study about the Formation of the Stacking Faults in GaN Nanowires along Different Growth Directions

Article Preview

Abstract:

Semiconducting nanowires offer the possibility of nearly unlimited complex bottom-up design, which allows for new device concepts. However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III–V compound semiconductors, are the wire crystal structure and the stacking fault density. In this paper, we have used the molecular dynamics simulations to study the formation of the stacking faults in GaN NW along [0001] and [11-20] directions. The results show that under same growth condition the GaN NW along [0001] has stacking fault while there is no stacking fault in GaN NW along [11-20]. We have analysis the possible reason and further study is underway.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

950-954

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 293, 1457 (2001).

Google Scholar

[2] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 149 (2003).

Google Scholar

[3] Y. Huang, X. Duan,Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, Science 294, 1313 (2001).

Google Scholar

[4] D. Y. Jeon, K. H. Kim, S. J. Park, J. H. Huh, H. Y. Kim, C. Y. Yim, and G. T. Kima, Appl. Phys. Lett. 89, 023108 (2006).

Google Scholar

[5] C. Cheze et al., Nano Res 3, 528–536 (2010).

Google Scholar

[6] Q. Liet et al., Adv. Mater., 21 (2009).

Google Scholar

[7] H.M. Kimet et al., Adv. Mater., 14 (2002).

Google Scholar

[8] J. Bao et al., Nano Lett. 8, 836–841 (2008).

Google Scholar

[9] L. Lari et al., Phys. Stat. Sol. (a) 205, 2589–2592 592 (2008).

Google Scholar

[10] B. M. Shi et al., Appl. Phys. Lett. 89, 151921 (2006).

Google Scholar

[11] H. Y. Xu, Z. Liu, Y. Liang, Y. Y. Rao, X. T. Zhang and S. K. Hark, Appl. Phys. Lett. 95, 133108 (2009).

Google Scholar

[12] D. Spirkoska et al. Phys. Rev. B 80, 245325 (2009).

Google Scholar

[13] S. A. Dayeh, D. Susac, K. L. Kavanagh, E. T. Yu and D. L. Wang, Adv. Funct. Mater. 19, 2102–2108 (2009).

Google Scholar

[14] H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan and C. Jagadish, Nano Lett. 10, 908–915 (2010).

Google Scholar

[15] X.W. Zhou, D.A. Murdick, B. Gillespie and H.N.G. Wadley, Phys. Rev. B 73, 045337 (2006).

Google Scholar

[16] /http: /lamps. sandia. govS (accessed 18. 09. 09).

Google Scholar