Manifold Recognition Based on Discriminative-Analysis of Canonical Correlations

Abstract:

Article Preview

Nowadays, the idea of recognition based on image sets looms so large in real world applications. From the view of manifold learning, each image set has commonly been regarded as a manifold, and we formulate the problem of set recognition as manifold recognition (MR). Since it is impossible to directly compute the distance between nonlinear manifolds, constructing local linear subspaces is brought into our focus. Among methods offering of subspace matching, canonical correlations have recently drawn intensive attention. For the task of MR, we propose a method of Manifold Recognition Based On Discriminative-analysis of Canonical Correlations (MRDCC). The proposed method is evaluated on two datasets: Honda/UCSD face video database and ETH-80 object database. Comprehensive comparisons and results demonstrate the effectiveness of our method.

Info:

Periodical:

Advanced Materials Research (Volumes 271-273)

Edited by:

Junqiao Xiong

Pages:

185-190

DOI:

10.4028/www.scientific.net/AMR.271-273.185

Citation:

H. J. Zhang et al., "Manifold Recognition Based on Discriminative-Analysis of Canonical Correlations", Advanced Materials Research, Vols. 271-273, pp. 185-190, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.