Using FPGA and CPLD ICs to Achieve High-Frequency PWM

Article Preview

Abstract:

PWM (Pulse width modulation) has been widely used in power converter control. This paper is the development of a high-frequency PWM generator architecture for power converter control using FPGA and CPLD ICs. The proposed architecture is based on a special design synchronous binary counter and can be easily interfaced to a microcontroller or DSP system. The resulting PWM frequency depends on the target FPGA or CPLD device speed grade and the duty cycle resolution requirements.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 271-273)

Pages:

314-319

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dancy, R. Amirtharajah, A. Chandrakasan, Highefficiency multiple-output DC–DC conversion for lowvoltage systems, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8 (2000).

DOI: 10.1109/92.845892

Google Scholar

[2] Peterchev, J. Xiao, S. Sanders, Architecture and IC implementation of a digital VRM controller, IEEE Transactions on Power Electronics 18 (2006).

DOI: 10.1109/tpel.2002.807099

Google Scholar

[3] Patella, A. Prodic´, A. Zirger, D. Maksimovic´, Highfrequency digital PWM controller IC for DC–DC converters, IEEE Transactions on Power Electronics 18 (2003).

DOI: 10.1109/tpel.2002.807121

Google Scholar

[4] R. Ramos, X. Roset, A. Manuel, Implementation of fuzzy logic controller for DC/DC converters using field programmable gate array, in: Proc. 17th IEEE Instrumentation and Measurement Technology Conference, vol. 1, (2001).

DOI: 10.1109/imtc.2000.846846

Google Scholar

[5] T. Ide, T. Yokoyama, A study of deadbeat control for three phase PWM inverter using FPGA based hardware controller, in: Proc. IEEE 35th Annual Power Electronics Specialists Conference, vol. 1, (2009).

DOI: 10.1109/pesc.2004.1355712

Google Scholar

[6] R. Ruelland, G. Gateau, T. Meynard, J. Hapiot, Design of FPGA-based emulator for series multicell converters using co-simulation tools, IEEE Transactions on Power Electronics 18 (2004).

DOI: 10.1109/tpel.2002.807104

Google Scholar

[7] R. Ramos, D. Biel, E. Fossas, F. Guinjoan, A fixedfrequency quasi-sliding control algorithm: application to power inverters design by means of FPGA implementation, IEEE Transactions on Power Electronics 18 (2010).

DOI: 10.1109/tpel.2002.807164

Google Scholar

[8] S. Jung, M. Chang, J. Jyang, L. Yeh, Y. Tzou, Design and implementation of an FPGA-based control IC for ACvoltage regulation, IEEE Transactions on Power Electronics 14 (2009).

DOI: 10.1109/63.761696

Google Scholar

[9] M.M. Islam, D. Allee, S. Konasani, A. Rodriguez, A lowcost digital controller for a switching DC converter with improved voltage regulation, IEEE Power Electronics Letters2 (2006).

DOI: 10.1109/lpel.2004.840256

Google Scholar

[10] Cadenas, G. Megson, A clocking technique for FPGA pipelined designs, Journal of Systems Architecture 50 (2007).

DOI: 10.1016/j.sysarc.2004.04.001

Google Scholar

[11] Brian von Herzen, Signal processing at 250 MHz using highperformance FPGA, IEEE Transactions on VLSI Systems 6 1998M. King, B. Zhu, and S. Tang, Optimal path planning, Mobile Robots, vol. 8, no. 2, pp.520-531, March (2001).

Google Scholar