PBP: A Type of BP Neural Network Algorithm Based on Priori Triggering

Abstract:

Article Preview

The algorithm of anomaly detection for large scale networks is a key way to promptly detect the abnormal traffic flows. In this paper, priori triggered BP neural network algorithm(PBP) is analyzed for the purpose of dealing with the problems caused by typical algorithms that are not able to adapt and learn; detect with high precision; provide high level of correctness. PBP uses K-Means and PCA to trigger self-adapting and learning ability, and also, it uses historical neuron parameter to initialize the neural network, so that it use the trained network to detect the abnormal traffic flows. According to experiments, PBP can obtain a higher level of correctness of detection than priori algorithm, and it can adapt itself according to different network environments.

Info:

Periodical:

Advanced Materials Research (Volumes 271-273)

Edited by:

Junqiao Xiong

Pages:

441-447

DOI:

10.4028/www.scientific.net/AMR.271-273.441

Citation:

X. M. Chen et al., "PBP: A Type of BP Neural Network Algorithm Based on Priori Triggering", Advanced Materials Research, Vols. 271-273, pp. 441-447, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.