Amplifying and Sequencing Analysis the Internal Transcribed Spacer (ITS) Regions of Olpidium Viciae Kusano’s Ribosomal DNA in Broad Bean

Article Preview

Abstract:

Plasmodiophora fire of broad bean is responsible for Olpidium Viciae Kusano, which is a kind of Fungi subdivided into bacteria flagellum amon. We have developed a polymerase chain reaction based method for the rapid identification internal transcribed spacer (ITS) regions of productionally significant fungi Olpidium Viciae Kusano from areas of 2500~3000 metres above sea level. Sequences of the nuclear internal transcribed spacer (ITS) regions ITS1 and ITS4 have been used widely in molecular characteristic studies because of their relatively high variability and facility of amplification. A universal quickly SDS micro-DNA extraction method was used combining a RNaseA pretreatment step to remove PCR interferential RNA. Target sequences in ITS regions genomic were amplified by PCR and sequenced. Using Hanpanchun lesion and healthy bean leaves as template and ITS1, ITS4 as primer to amplify ITS region, the results revealed ITS gene of broad bean genome could be amplified with size of 750bp from healthy leaves, it could be amplified two fragments of 750bp and 500bp from the DNA template extracted from Hanpanchun lesion tissue. The ITS sequence of Olpidium Viciae Kusano is 99% homoeology with Cercospora (grey speck) pathogen. This may lay the foundation for research about classification and analyze evolutionary relationships of Olpidium Viciae Kusano.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 271-273)

Pages:

507-513

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Campbell RN, Sim ST. Host specificity and nomenclature of Olpidium bornovanus (¼Olpidium radicale) and comparisons to Olpidium brassicae. Canadian Journal of Botany Vol. 72 (1994), p.1136–1143.

DOI: 10.1139/b94-139

Google Scholar

[2] Lin Dawu, Cui Guangcheng. Suvey on Olpidium viciae Kusamo in Vicia faba in Tibet. Southwest China Journal of Agricultural Sciences, 2(2) (1989).

Google Scholar

[3] Ward, E. Use of the polymerase chain reaction for identifying plant pathogens. In Ecology of Plant Pathogens (ed. J. P. Blakeman & B. Williamson), pp.143-160. C.A.B.I. : Wallingford, U. K(1994).

Google Scholar

[4] Kularatne HAGC, Lawrie AC, Barber PA, Keane PJ. A specific primer PCR and RFLP assay for the rapid detection and differentiation in planta of some Mycosphaerella species associated with foliar diseases of Eucalyptus globulus. Mycological Research Vol. 108(2004).

DOI: 10.1017/s0953756204000759

Google Scholar

[5] E. Ward, M.J. Adams. Analysis of ribosomal DNA sequences of Polymyxa species and related fungi and the development of genus- and species-specific PCR primers. Mycological Research, Vol. 102(1998), pp.965-974.

DOI: 10.1017/s0953756297005881

Google Scholar

[6] Pramateftaki, P. V., Lanaridis, P., and Typas, M. A. Molecular identification of wine yeasts at species or strain level: a case study with strains from two vine-growing areas of Greece. J. Appl. Microbiol., Vol. 89(2000), p.236–248.

DOI: 10.1046/j.1365-2672.2000.01102.x

Google Scholar

[7] Guillamónd, J.M., Sabaté, J., Barrio, E., Cano, J., and Querol, A. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol., Vol. 169(1998), p.387–392.

DOI: 10.1007/s002030050587

Google Scholar

[8] Gurtler, V., Stanisich, V.A. Newapproaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology Vol. 142(1996), p.3–16.

DOI: 10.1099/13500872-142-1-3

Google Scholar

[9] Conrads, G., Claros M.C., Citron, D.M., Tyrrell, K.L., Merriam, V., Goldstein, E.J. 16S-23S rDNA internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Fusobacterium. Int. J. Syst. Evol. Microbiol. Vol. 52(2002).

DOI: 10.1099/00207713-52-2-493

Google Scholar

[10] Guasp, C., Moore, E.R., Lalucat, J., Bennasar, A. Utility of internally transcribed 16S-23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int. J. Syst. Evol. Microbiol. Vol. 50(2000).

DOI: 10.1099/00207713-50-4-1629

Google Scholar

[11] Motoyama, Y., Ogata, T. 16S-23S rDNA spacer of Pectinatus, Selenomonas and Zymophilus reveal new phylogenetic relationships between these genera. Int. J. Syst. Evol. Microbiol. Vol. 50(2000), p.883–886.

DOI: 10.1099/00207713-50-2-883

Google Scholar

[12] Yoon, J.H., Lee, S.T., Kim, S.B., Goodfellow, M., Park, Y.H. Inter- and intraspecific genetic analysis of the genus Saccharomonospora with 16S to 23S ribosomal DNA (rDNA) and 23S to 5S rDNA internally transcribed spacer sequences. Int. J. Syst. Bacteriol. Vol. 47(1997).

DOI: 10.1099/00207713-47-3-661

Google Scholar

[13] White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds), PCR Protocols: a guide to methods and amplifications. Academic Press, San Diego(1990).

DOI: 10.1016/b978-0-12-372180-8.50042-1

Google Scholar

[14] Lee SB, Taylor JW. Phylogeny of five fungus-like protoctistan phytophthora species, inferred from the internal transcribed spacer of ribosomal DNA. Molecular Biology and Evolution Vol. 9(1992) p.636–653.

DOI: 10.1093/oxfordjournals.molbev.a040750

Google Scholar

[15] Sreenivasaprasad S, Mills PR, Meehan BM, Brown AE, 1996. Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome Vol. 39(1996), p.499–512.

DOI: 10.1139/g96-064

Google Scholar

[16] Crous PW, Hong L, Wingfield BD, Wingfield MJ. ITS rDNA phylogeny of selected Mycosphaerella species and their anamorphs occurring on Myrtaceae. Mycological Research Vol. 105(2001) p.425–431.

DOI: 10.1017/s0953756201003835

Google Scholar

[17] Dunne CP, Glen M, Tommerup IC, Shearer BL, Hardy GESt J. Sequence variation in the rDNA ITS of Australian Armillaria species and intra-specific variation in A. luteobubalina. Austra. Plant Pathol. Vol. 31(2002) p.241–251.

DOI: 10.1071/ap02015

Google Scholar

[18] Boyang Cao, Min Wang, Lei Liu, Zhemin Zhou, Shaoping Wen, Antoni Rozalski, Lei Wang. 16S-23S rDNA internal transcribed spacer regions in four Proteus species. Journal of Microbiol. Methods. Vol. 77(2009), pp.109-118.

DOI: 10.1016/j.mimet.2009.01.024

Google Scholar

[19] Wang Lihua, Yin Fuyou, Liu Jimei, Ye Lǚrong. Genetic diversity and relationships of the wild buckwheat resources from yunnan province revealed by RAPD. Buckwheat News, Vol. (2) (2004), pp.7-15.

Google Scholar

[20] Wang Jianbo, Zhang Wenju, Cheng Jiakuan. Application of ITS sequences of nuclear rDNA in phylogenetic and evolutionary studies of angiosperms. Acta Phytotaxonomica Sinica, Vol. 37(4)(1999), p.407.

Google Scholar

[21] Somai BM, Dean RA, Farnham MW, Zitter TA, Keinath AP. Internal transcribed spacer regions 1 and 2 and random amplified polymorphic DNA analysis of Didymella bryoniae and related Phoma species isolated from curcubits. Phytopathology, Vol. 92(2002).

DOI: 10.1094/phyto.2002.92.9.997

Google Scholar

[22] Zambino PL, Szabo LJ. Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia, Vol. 85(1993), p.401.

DOI: 10.2307/3760702

Google Scholar

[23] Steven VV, Stephen RP. Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Molecular Ecol, Vol. 13(2004), p.2763.

DOI: 10.1111/j.1365-294x.2004.02265.x

Google Scholar

[24] Liu Zhong, Wang Xiaoquan, Chen Zhiduan. The Phylogeny of Schisandraceae Inferred from Sequence Analysis of the nrDNA ITS Region. Acta Botanica Sinica, Vol. 42(7)(2000), p.758.

Google Scholar

[25] Gardes MT, Bruns D. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecol, Vol. 2(1993), p.113.

DOI: 10.1111/j.1365-294x.1993.tb00005.x

Google Scholar

[26] Zhao Jie. ITS sequential analysis and its application in molecular detection of plant fungal disease. Shaanxi Journal of Agricultural Sciences, Vol. (4)(2004), p.35.

Google Scholar

[27] Cai Jinna, Zhou Kaiya, Xu Luoshan, Wang Zhengtao, Shen Xi, Wang Yiquan, Li Xiaobo. Ribosomal DNA its sequence analyses of Cnidium monnieri from different geographical origin in China. Acta Pharmaceutica Sinica, Vol. 35(1)(2000), p.56.

Google Scholar

[28] Chinese Academy of Sciences-Flora Repubulicae Popularis Sinicae editorial board, Flora Repubulicae Popularis Sinicae(30-1). Beijing.

DOI: 10.1051/978-2-7598-2503-5.c009

Google Scholar

[29] Lucy M. H., Paul J. H. and John A. W. A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biology, Vol. 114(2010), pp.26-33.

DOI: 10.1016/j.mycres.2009.09.008

Google Scholar

[30] Jung T, Nechwatal J, Cooke DEL, Hartmann G, Blaschke M, OsswaldWF, Duncan JM, Delatour C. Phytophthora pseudosyringae sp nov., a new species causing root and collar rot of deciduous tree species in Europe. Mycological Research Vol. 107(2003).

DOI: 10.1017/s0953756203008074

Google Scholar

[31] Muthumeenakshi S, Goldstein AL, Stewart A, Whipps JM. Molecular studies on intraspecific diversity and phylogenetic position of Coniothyrium minitans. Mycological Research Vol. 105(2001), p.1065–1074.

DOI: 10.1016/s0953-7562(08)61968-1

Google Scholar