Analysis of Codon Usage Pattern in the DNA Polymerase Gene of Porcine Cytomegalovirus

Article Preview

Abstract:

The analysis of the codon usage pattern of Porcine Cytomegalovirus (PCMV) DPOL gene has both theoretical and practical value in understanding the basics of molecular biology and selecting appropriate expression systems to improve the expression level. In this study, the codon usage pattern of PCMV DPOL gene and other 36 reference herperviruses were analyzed, the results showed that the codon of PCMV DPOL gene was strong bias toward the synonymous codons with G or C at the third codon position, and was closer relatively to these viruses which were classified in Betaherpesvirinae. Correlation analysis indicated that there was no obvious correlation between PCMV DPOL gene and it’s host swine, and 13 codons showed distinct usage preference between PCMV DPOL gene and H.sapiens, whereas 16 in the E.coli and 27 in the yeast. Thus the mammal expression system may be more appropriate for the expression of PCMV DPOL gene.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 271-273)

Pages:

514-520

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Grantham, R., Gautier, C., Gouy, M., Mercier, R., Pave, A. Codon catalog usage and the genome hypothesis. Nucleic acids research Vol. 8(1980), p.197.

DOI: 10.1093/nar/8.1.197-c

Google Scholar

[2] Andrew T. Lloyd, P.M.S. Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucl. Acids Res. Vol. 20(1992), pp.5289-5295.

DOI: 10.1093/nar/20.20.5289

Google Scholar

[3] Grocock, R., Sharp, P. Synonymous codon usage in Cryptosporidium parvum: Identification of two distinct trends among genes. International journal for parasitology Vol. 31(2001), pp.402-412.

DOI: 10.1016/s0020-7519(01)00129-1

Google Scholar

[4] Sharp, P., Stenico, M., Peden, J., Lloyd, A. Codon usage: mutational bias, translational selection, or both? Biochemical Society Transactions Vol. 21(1993), pp.835-841.

DOI: 10.1042/bst0210835

Google Scholar

[5] Shackelton, L., Parrish, C., Holmes, E. Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. Journal of molecular evolution Vol. 62(2006), pp.551-563.

DOI: 10.1007/s00239-005-0221-1

Google Scholar

[6] Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Molecular biology and evolution Vol. 2(1985), pp.13-34.

DOI: 10.1093/oxfordjournals.molbev.a040335

Google Scholar

[7] Jiang, Y., Deng, F., Wang, H., Hu, Z. An extensive analysis on the global codon usage pattern of baculoviruses. Archives of virology Vol. 153(2008), pp.2273-2282.

DOI: 10.1007/s00705-008-0260-1

Google Scholar

[8] Levin, D., Whittome, B. Codon usage in nucleopolyhedroviruses. Journal of General Virology Vol. 81(2000), pp.2313-2325.

DOI: 10.1099/0022-1317-81-9-2313

Google Scholar

[9] Jenkins, G., Holmes, E. The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus research Vol. 92(2003), pp.1-7.

DOI: 10.1016/s0168-1702(02)00309-x

Google Scholar

[10] Karlin, S., Blaisdell, B., Schachtel, G. Contrasts in codon usage of latent versus productive genes of Epstein-Barr virus: data and hypotheses. Journal of virology Vol. 64(1990), pp.4264-4273.

DOI: 10.1128/jvi.64.9.4264-4273.1990

Google Scholar

[11] Grosjean, H., Fiers, W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene Vol. 18(1982), pp.199-209.

DOI: 10.1016/0378-1119(82)90157-3

Google Scholar

[12] Haas, J., Park, E., Seed, B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Current Biology Vol. 6(1996), pp.315-324.

DOI: 10.1016/s0960-9822(02)00482-7

Google Scholar

[13] Holm, L. Codon usage and gene expression. Nucleic acids research Vol. 14(1986), pp.3075-3087.

DOI: 10.1093/nar/14.7.3075

Google Scholar

[14] Ru, M., Qin, H., Bo, X., Rong, F., Fei, L., Chun, C. Gene Cloning and Structural Analysis of Virion Host Shutoff protein of Pseudorabies Virus. Chinese Journal of Biochemistry and Molecular Biology, 65-71(2005).

Google Scholar

[15] Hall, J., Gibbs, J., Coen, D., Mount, D. Structural organization and unusual codon usage in the DNA polymerase gene from herpes simplex virus type 1. DNA (Mary Ann Liebert, Inc. ) Vol. 5(1986), pp.281-288.

DOI: 10.1089/dna.1986.5.281

Google Scholar

[16] Jia, R., Cheng, A., Wang, M., Xin, H., Guo, Y., Zhu, D., Qi, X., Zhao, L., Ge, H., Chen, X. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes Vol. 38(2009), pp.96-103.

DOI: 10.1007/s11262-008-0295-0

Google Scholar

[17] Fu, M., Codon usage bias in herpesvirus. Archives of virology Vol. 155, 391-396.

DOI: 10.1007/s00705-010-0597-0

Google Scholar

[18] Edington, N., Broad, S., Wrathall, A., Done, J., 1988. Superinfection with porcine cytomegalovirus initiating transplacental infection. Veterinary microbiology Vol. 16, 189-193.

DOI: 10.1016/0378-1135(88)90043-0

Google Scholar

[19] Plowright, W., Edington, N., Watt, R. The behaviour of porcine cytomegalovirus in commercial pig herds. Epidemiology and Infection Vol. 76(1976), pp.125-135.

DOI: 10.1017/s0022172400055017

Google Scholar

[20] Yoo, D., Giulivi, A. Xenotransplantation and the potential risk of xenogeneic transmission of porcine viruses. Canadian Journal of Veterinary Research Vol. 64(2000), pp.193-203.

Google Scholar

[21] Chmielewicz, B., Goltz, M., Lahrmann, K., Ehlers, B. Approaching virus safety in xenotransplantation: a search for unrecognized herpesviruses in pigs. Xenotransplantation Vol. 10(2003), pp.349-356.

DOI: 10.1034/j.1399-3089.2003.02074.x

Google Scholar

[22] Scobie, L., Takeuchi, Y. Porcine endogenous retrovirus and other viruses in xenotransplantation. Current Opinion in Organ Transplantation Vol. 14(2009), pp.175-179.

DOI: 10.1097/mot.0b013e328327984d

Google Scholar

[23] Garkavenko, O., Dieckhoff, B., Wynyard, S., Denner, J., Elliott, R., Tan, P., Croxson, M. Absence of transmission of potentially xenotic viruses in a prospective pig to primate islet xenotransplantation study. Journal of medical virology Vol. 80(2008).

DOI: 10.1002/jmv.21272

Google Scholar

[24] Rupasinghe, V., Iwatsuki-Horimoto, K., Sugii, S., Horimoto, T. Identification of the porcine cytomegalovirus major capsid protein gene. The Journal of veterinary medical science/the Japanese Society of Veterinary Science Vol. 63(2001).

DOI: 10.1292/jvms.63.609

Google Scholar

[25] Widen, F., Goltz, M., Wittenbrink, N., Ehlers, B., Banks, M., Belak, S. Identification and sequence analysis of the glycoprotein B gene of porcine cytomegalovirus. Virus Genes Vol. 23(2001), pp.339-346.

DOI: 10.1023/a:1012581508733

Google Scholar

[26] Wright, F. The effective number of codons' used in a gene. Gene Vol. 87(1990), pp.23-29.

DOI: 10.1016/0378-1119(90)90491-9

Google Scholar

[27] Sharp, P., Li, W. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic acids research Vol. 15(1987), pp.1281-1295.

DOI: 10.1093/nar/15.3.1281

Google Scholar

[28] Sakai, H., Washio, T., Saito, R., Shinagawa, A., Itoh, M., Shibata, K., Carninci, P., Konno, H., Kawai, J., Hayashizaki, Y. Correlation between sequence conservation of the 5'untranslated region and codon usage bias in Mus musculus genes. Gene Vol. 276(2001).

DOI: 10.1016/s0378-1119(01)00671-0

Google Scholar

[29] Lu, H., Zhao, W., Zheng, Y., Wang, H., Qi, M., Yu, X. Analysis of synonymous codon usage bias in Chlamydia. Acta biochimica et biophysica Sinica Vol. 37(2005), pp.1-10.

DOI: 10.1093/abbs/37.1.1

Google Scholar

[30] Blake, W., K rn, M., Cantor, C., Collins, J. Noise in eukaryotic gene expression. Nature Vol. 422(2003), pp.633-637.

DOI: 10.1038/nature01546

Google Scholar

[31] Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., Wang, Y., Wang, J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics and Genomics Vol. 35(2008), pp.105-118.

DOI: 10.1016/s1673-8527(08)60016-8

Google Scholar

[32] Jobb, G., Von Haeseler, A., Strimmer, K. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology Vol. 4(2004), p.18.

DOI: 10.1186/s12862-015-0513-z

Google Scholar

[33] Moriyama, E., Powell, J. Codon usage bias and tRNA abundance in Drosophila. Journal of molecular evolution Vol. 45(1997), pp.514-523.

DOI: 10.1007/pl00006256

Google Scholar

[34] Gouy, M., Gautier, C. Codon usage in bacteria: correlation with gene expressivity. Nucleic acids research Vol. 10(1982), pp.7055-7074.

DOI: 10.1093/nar/10.22.7055

Google Scholar

[35] Bulmer, M. The selection-mutation-drift theory of synonymous codon usage. Genetics Vol. 129(1991), pp.897-907.

DOI: 10.1093/genetics/129.3.897

Google Scholar