Thermomechanical Couplings in Aircraft Tire Rolling/Sliding Modeling

Article Preview

Abstract:

This paper presents a finite element model for the simulation of aircraft tire rolling. Large deformations, material incompressibility, heterogeneities of the material, unilateral contact with Coulomb friction law are taken into account. The numerical model will allow estimating the forces in the contact patch - even in critical and extreme conditions for the aircraft safety and security. We show the influence of loading parameters (vertical load, velocity, inflating pressure) and slip angle on the Self Aligning torque and on the lateral friction coefficient. A friction coefficient law corresponding to Chichinadze model is considered to take into account thermal effects in the aircraft tire model behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-90

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. A. Olatunbosum, E. O. Bolarinwa, Finite element simulation of the tyre burst test, Proceedings of the Institution of Mechanical Engineers, Vol. 218, pp.1251-1258, (2006).

DOI: 10.1243/0954407042580075

Google Scholar

[2] M.H. R Ghoreish, Finite Element Analysis of Steel-Belted Radial Tyre with Tread Pattern under Contact Load, Iranian Polymer Journal, Vol. 15 (8), pp.667-674, (2006).

Google Scholar

[3] N. Lahellec, F. Mazerolle, J.C. Michel, Second-order estimate of the macroscopic behaviour of periodic hyperelastic composites: theory and experimental validation, Journal of the Mechanics and Physics of Solids, Vol. 52 , pp.27-49, (2004).

DOI: 10.1016/s0022-5096(03)00104-2

Google Scholar

[4] Société de technologie Michelin. Le pneu - L'adhérence. Michelin France (2001).

Google Scholar

[5] A. Kongo Kondé, I. Rosu, F. Lebon, O. Brardo, B. Devésa, Etude du comportement en roulement d'un pneu d'avion, Colloque Nationale de Calcul de Structure, Giens, France (2009).

DOI: 10.4028/www.scientific.net/amr.274.81

Google Scholar

[6] U. Nackenhorst, The ALE-formulation of bodies in rolling contact - Theoritical foundations and finite element approach, Computational Methods in Applied Mechanics and Engineering, Vol. 193, pp.4299-4322, (2004).

DOI: 10.1016/j.cma.2004.01.033

Google Scholar

[7] N. Korunovic, M. Trajanovic, M. Stojkovic, Finite Element Model for Steady-state Rolling Tire Analysis, Journal of the Serbian Society for Computational Mechanics, vol. 1 (1), pp.63-79. (2007).

Google Scholar

[8] H. Tuncay Yuksel, S. Karadeniz, A computation model to predict the thermomechanical behavior of automobile tires, Constitutive Models for Rubber III, Busfield et Muhr (2003).

Google Scholar

[9] H. Sakai, K. Araki, Thermal Engineering Analysis of Rubber Vulcanization and Tread Temperatures during Severe Sliding of a Tire, Tire Science and Technology, Vol. 27 (1), pp.22-47, (1999).

DOI: 10.2346/1.2135973

Google Scholar

[10] J. Awrejcewicz, Yu Pyr'yev, Nonsmooth Dynamics of Contacting Thermoelastic Bodies, Advances in Mechanics and Mathematics, Vol. 16, Springer (2009).

DOI: 10.1007/978-0-387-09653-7_1

Google Scholar