Application of a Multiscale Constitutive Framework to Real Gas Turbine Components

Abstract:

Article Preview

A multiscale constitutive framework for Ni-base superalloys has been developed, in which an efficient unit cell is adopted to describe the γ/γ’ microstructure morphology. The framework enables the prediction of the deformation and the creep and fatigue damage accumulation in CMSX-4 for a range of temperatures and stress levels. Moreover, the material microstructural degradation due to rafting and isotropic coarsening can be simulated, and the effects of this degradation on the alloy mechanical response can be quantified. The present paper focuses on the application of the model to real gas turbine components. A high pressure turbine blade finite element model is used to demonstrate the computational efficiency of the multiscale framework. Moreover, the location of critical regions and the life time are shown to differ from the results obtained from classical models that neglect the microstructure evolution.

Info:

Periodical:

Main Theme:

Edited by:

M. Heilmaier

Pages:

253-258

DOI:

10.4028/www.scientific.net/AMR.278.253

Citation:

T. Tinga et al., "Application of a Multiscale Constitutive Framework to Real Gas Turbine Components", Advanced Materials Research, Vol. 278, pp. 253-258, 2011

Online since:

July 2011

Export:

In order to see related information, you need to Login.

In order to see related information, you need to Login.