Effect of Cooling Rates after Finish Rolling on Microstructure and Properties of Microalloyed Steels Used for Fracture Splitting Con-Rods

Article Preview

Abstract:

The effect of cooling rates after finish rolling on microstructure and properties of high strength medium carbon microalloyed steels used for fracture splitting con-rods was investigated using the methods of optical microscopy, SEM and TEM, etc. The results show that high cooling rate after finish rolling can increase the percentage of pearlite, reduce the grain size of ferrite and lamellar spacing of pearlite. The precipitations in the steel are composite phases of (V,Ti)(C,N), etc. Their granularity are about 30-170nm, and they will decrease with the speeding up cooling. The yield strength (YS) and ultimate tensile strength (UTS) are improved with increasing the cooling rate. The impact fracture surface shows distinct brittle fracture character.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

1053-1059

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.J.WU,C.L.DAVIS. Journal of Microscopy, 2004, 213(3):262-272

Google Scholar

[2] Balart MJ, Davis CL, Strangwood. Mater. Sci. Eng., 2000, 284: 1-13

Google Scholar

[3] X. Yanga; M. Salema; E. J. Palmiere. Mater. Manuf. Processes, 2010, 25(1-3): 48-53

Google Scholar

[4] Li Zhuang, Wu Di. Journal of Zhejiang University-Science A, 2007, 8(5): 797-804.

Google Scholar

[5] Matlock DK, Krauss G, Speer JG. J. Mater. Process. Technol., 2001, 117: 324-328.

Google Scholar

[6] Gonzalez-Baquet I, Kaspar R, Richter J. Steel Res, 1997; 68 (2): 61-66.

Google Scholar

[7] Jahazi M, Eghbali B. J. Mater. Process. Technol., 2001, 113:594-598

Google Scholar

[8] Zhuang LI, Di WU, Hui-sheng LV,Shi-rong FANG. J. Iron and Steel Res., 2007, 14(5):277-281

Google Scholar

[9] J.H. Ai, T.C. Zhao, H.J. Gao, Y.H. Hu, X.S. Xie. J. Mater. Process. Technol., 2005, 160(3): 390-395.

Google Scholar

[10] A.B. Cota, R. Barbosa, D.B. Santos. J. Mater. Process. Technol., 2000, 100(1-3): 156-162.

Google Scholar

[11] Sage AM. In:Tither G, Shouhua Z, editors. HSLA steels: Properties Properties and Application, 1992. 51-68

Google Scholar

[12] Grassl KJ, Thompson SW, Krauss G. SAE, No.890508, (1989)

Google Scholar

[13] Shinsaku F, Hirohito E. JSAE Review 2002, 23: 101-104

Google Scholar

[14] H. Grass, C. Krempaszky, E. Werner. Comp. Mater. Sci., 2006, 36(4): 480-489

Google Scholar

[15] D. Rasouli, Sh. Khameneh Asl, A. Akbarzadeh, G.H. Daneshi. Materials & Design, 2009, 30(6): 2167-2172

DOI: 10.1016/j.matdes.2008.08.024

Google Scholar

[16] Torizuka S. in: Rodrigez-Ibabe JM, editor. Trans Tech Publications, Donostia-San Sebastian,1998, 284-286: 225-230

Google Scholar

[17] F.H. Samuel. Transactions ISIJ, 1983, 23: 403-409

Google Scholar

[18] Rune Lagneborg,Tadeusz Siwecki,Stanislaw Zajac,Bevis Hutchinson. Sweden: Swedish Institute for Metals Research Stockholm,(1999)

Google Scholar

[19] Strid J, Easterling KE. Acta Metall, 1985, 33: 2057-2074

Google Scholar

[20] Satoshi K, Ryuji O. JAMA, 2006, 20: 7-10

Google Scholar

[21] Gladman T. 1sted. Landon: The Institute of Materials; 1997. 337-344

Google Scholar