Fabrication of Electroconductive Si3N4–TiN Ceramic from Iron Ore Tailing

Article Preview

Abstract:

Electroconductive Si3N4–TiN ceramic was fabricated by pressureless sintering from the chief materials containing high titanium slag and Si3N4 powder synthesized by carbonthermal reduction nitridation method using iron ore tailing as raw materials. Phase constitutes and microstructure were analyzed by XRD and SEM. The densification, mechanical properties and electrical conductivity of Si3N4–TiN ceramic were also measured. Results show that the sintered samples mainly consist of Si3N4 and TiN. Si3N4 exhibits rod morphology and the grain sizes are about 1-3mm.TiN shows fine granular morphology with most of grain size being lower than 0.5mm. The electroconductive Si3N4–TiN ceramic has optimal properties when it is sintered at 1550°C for 2h using initial raw materials containing 20wt% TiO2. The sintered sample’s bulk density, hardness, flexure strength and room electrical resistivity are 2.79 g·cm-3, 8.23GPa, 66 MPa and 7.1×10-2W·cm, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

1067-1070

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.C. Liu: Mater. Sci. Eng Vol.A3639 (2003), P. 221.

Google Scholar

[2] K. Liu, D. Reynaerts, B. Lauwers: CIRP Annals - Manufacturing Technology Vol.58 (2009), P.217.

Google Scholar

[3] Z.Q. Guo, G. Blugan, R. Kirchner, M. Reece, T Graule, J. Kuebler: Ceram. Int. Vol.33 (2007), P.1223.

Google Scholar

[4] J. Křest'an, P. Šajgalík, Z. Pánek: J. Eur. Ceram. Soc. Vol.24 (2004), P.791.

Google Scholar

[5] H. Arik, S. Saritas, M. Gündüz: J. Mater. Sci. Vol.34 (1999), P.836.

Google Scholar

[6] S.H. Zhang, X.X. Xue, Q. Lu, D.W. Huang: Iron and Steel Vol.43 (2008), P.85 (in Chinese).

Google Scholar

[7] I.D. Gnilitsa, Y.A. Kril: Powd. Metall. Met. Ceram. Vol.44 (2005), P. 441.

Google Scholar

[8] Z.X. Chen: Mater. Rev. (1993), P.29 (In Chinese).

Google Scholar

[9] B.T. Lee, Y.J. Yoon, K.H. Lee: Mater. Lett. Vol.47 (2001), P. 71.

Google Scholar

[10] F. J. Narciso-Romero, F. Rodríguez-Reínoso: J. Mater. Sci. Vol.31 (1996), P.779.

Google Scholar

[11] T. Jiang, X.X. Xue, P.N. Duan, G. Du: ACTA Metall. Sinica Vol.43 (2007), P.131 (In Chinese).

Google Scholar

[12] H. Zou, C.P. Zou: China Nuclear Sci. and Tech. Report (2003), P. 238 (In Chinese).

Google Scholar

[13] B.Y Liang, M.Z. Wang: J. Yanshan Univ. Vol.34 (2010), P,204(In Chinese).

Google Scholar

[14] R.S. Wang, S.J. Yu, S.W Yao: Ceramics (2009), P.18 (In Chinese).

Google Scholar

[15] S.Q. Wang, C.G. Zhang, S.W. Wang, G.J. Qi, F. Cao, H.F. Hu, Y.G. Jiang: Mater. Rev. Vol.20(S1) (2006), P.459 (In Chinese).

Google Scholar