The High-Performance of Cerium Doped Sodium Bismuth Titanate Aurivillirs Phase Material

Article Preview

Abstract:

The effect of Ce substitution at the A-site on the properties of Na0.5Bi4.5Ti4O15 (NBT)–based ceramics was systematically investigated. The substitution at A-site caused distortion of lattice and improved piezoelectric activity correspondingly. The piezoelectric coefficient d33 of the Na0.5Bi4.5-xCexTi4O15 (x=0.03) ceramic was found to be as high as 26 pC/N, together with high mechanical quality factor Q ( 2769 ), and stable piezoelectric properties, demonstrating that the Ce-modified NBT-based materials are promising candidates for high-temperature applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

1389-1392

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Dearaujo, J.D. Cuchiaro, L.D. Mcmillan, M.C. Scott , J.F. Scott: Nature Vol. 374 (1995), p.627.

Google Scholar

[2] B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo: Nature Vol. 401 (1999), p.682

Google Scholar

[3] L. Pardo, A. Cstro, P. Millan, C. Alemany, R. Jimenez, B. Jimenez: Acta Mater Vol. 48 (2000), p.2421.

Google Scholar

[4] S.H. Hong, Trolier-Mckinstry S, G.S. Messing: J. Am. Ceram. Soc Vol. 83 (2000), p.113

Google Scholar

[5] H.X. Yan, H.T. Zhang, R. Ubic, M.J. Reece, J. Liu, Z.J. Shen, Z. Zhang: Adv Mater Vol. 17 (2005), p.261~1268

Google Scholar

[6] M.E. Lines, A.M. Glass, in: Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1979)

Google Scholar

[7] T. Takenaka, K. Sakata: J. Appl. Phys Vol. 55 (1984), p.1092

Google Scholar

[8] R.Z. Hou, X.M. Chen: J. Mater. Res Vol. 20 (2005), p.2354

Google Scholar

[9] R.Z. Hou, X.M. Chen: Solid State Commun Vol. 130 (2004), p.469

Google Scholar

[10] Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama: Jpn. J. Appl. Phys Vol. 39 (2000), p. L1259

Google Scholar

[11] Y. Yao, C. Song, P. Bao, D. Su, X. Lu, J. Zhu, Y. Wang: J. Appl. Phys Vol. 95 (2004), p.3126.

Google Scholar

[12] Z. Zhang, H. Yan, X. Dong, Y. Wang: Mater. Res. Bull Vol. 38 (2003), p.241

Google Scholar

[13] M. Villegas, T. Jardiel, G. Farias: J. Eur. Ceram. Soc Vol. 24 (2004), p.1025

Google Scholar

[14] L. Zhang, R. Chu, S. Zhao, G. Li, Q. Yin: Mater. Sci. Eng Vol. 116 (2005), p.99.

Google Scholar

[15] S. Hong, J. Horn, S.Trolier-Mckinstry, G.L. Messing: J. Mater. Sci. Lett Vol. 191 (2000), p.661.

Google Scholar

[16] H.X. Yan, C.E. Li, J.G. Zhou: Jpn. J. Appl. Phys Vol. 39(2000), p.6339.

Google Scholar

[17] J.T. Zeng, Y.X. Li, D. Wang, Q.R. Yin: Solid State Commun Vol. 133 (2005), p.533.

Google Scholar

[18] A. Moure, C. Alemany, L. Pardo: IEEE Trans. Ultrason Ferro. Freq. Contro Vol. 52 (2005), p.570.

Google Scholar

[19] X. Zhang, Z. Huang, H. Chan, K. Kwok, C. Choy: J. Eur. Ceram. Soc Vol. 19 (1999), p.985

Google Scholar

[20] T. Takeuchi, T. Tani, T. Saito: Jpn. J. Appl. Phys Vol. 39 (2000), p.577.

Google Scholar

[21] H. Hao, X.H. Liu: Ouyang S X. Bulletin of Cilicate Vol. 2 (2004), p.52~56

Google Scholar

[22] H.X. Yan, C.G. Li, J.G. Zhou: Jpn J Appl Phys Vol. 39 (2000), p.6339~6342

Google Scholar

[23] A. Hushur, J.K. Ko, S. Kojima: J Korean Phys Soc Vol. 41 (2002), p. (5) 763~768

Google Scholar

[24] H.X. Qin, R.A. Gerhardt , J.S. Zhu: Integr Ferroelectr Vol. 45 (2002), p.183~188

Google Scholar

[25] Subbarao E C: Phys. Chem. Sloids Vol. 23 (1962), p.665

Google Scholar