Influence of Fe on the Formation of Nucleation in Carbon-Inoculated Mg-3%Al Alloy

Article Preview

Abstract:

The Mg-3% Al melt was treated by carbon inoculation and Fe addition. The influence of Fe on the formation of nucleation was investigated. That Fe inhibited the grain refinement of the carbon-inoculated Mg-3%Al alloy or not was closely associated with the operating sequence of carbon inoculation and Fe addition. Under the condition of Fe addition firstly and then carbon inoculation, the Al4C3 particles and the particles with duplex phase structure of Al4C3 coated on Al-C-Fe or Al-Fe could be observed. Both kinds of particles should act as nucleating substrates for a-Mg grains, resulting in no obvious effect of Fe on refining efficiency of carbon inoculation. Under the contrary condition, the potency of Al4C3 nucleating substrates was poisoned by transforming Al4C3 into Al-C-Fe-rich intermetallic particles, resulting in grain-coarsening.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

1588-1593

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. Luo:Inter. Mater Reviews Vol.49 (2004), p.13.

Google Scholar

[2] X. Q. Zeng, Y. X. Wang, W. J. Ding, A. A. Luo and A K Sachdev:Metall. Mater. Trans. A Vol.37 (2006), p.1333.

Google Scholar

[3] J. Du,J. Yang, M. Kuwabara, W. F. Li and J. H. Peng:Mater. Trans. Vol. 49 (2008), p.2303.

Google Scholar

[4] D. H. St.John, M. Qian, M. A. Easton and P. Cao:Metall. Mater. Trans. A Vol. 36 (2005), p.1669.

Google Scholar

[5] T. I. Motegi:Mater. Sci. Eng. A Vol. 413-414 (2005), p.408.

Google Scholar

[6] P. Cao, M. Qian, and D. H. St.John:Scr. Mater. Vol. 56 (2007), p.633.

Google Scholar

[7] Y. Tamura, E. Yano, T. Motegi and E. Sato. Mater. Trans. Vol. 44 (2003), p.107.

Google Scholar

[8] M. Qian and P. Cao:Scr. Mater. Vol. 52 (2005), p.415.

Google Scholar

[9] Y. H. Liu, X. F. Liu and X. F. Bian:Mater. Lett. Vol. 58 (2004), p.1282.

Google Scholar

[10] L. Lu, A. Kdahle and D. H. St.John. Scr. Mater. Vol. 53 (2005), p.517.

Google Scholar

[11] J. Du, J. Yang, M. Kuwabara, W. F. Li and J. H. Peng:J. Alloys Comp. Vol. 470(2009), p.134.

Google Scholar

[12] J. Du,J. Yang, M. Kuwabara, W. F. Li and J. H. Peng:J. Alloys Comp. Vol. 470 (2009), p.228.

Google Scholar

[13] T. Haitani, Y. Tamura, E. Yano, T. Motegi, N. Kono and E. Sato:J. Jpn. Inst. Light Met. Vol. 51 (2001), p.403.

Google Scholar

[14] P. Cao, M. Qian and D. H. St.John:Scr. Mater. Vol. 53 (2005), p.841.

Google Scholar

[15] Y. C. Pan, X. F. Liu and H. Yang:J. Mater. Sci. Tech. Vol. 21 (2005), p.822.

Google Scholar

[16] J. Du,J. Yang, M. Kuwabara, W. F. Li and J. H. Peng:Mater. Trans. Vol. 48 (2007), p.2903.

Google Scholar

[17] T. B. Massalski, J. L. Murray, L. H. Bennett and H. Baker:Binary alloy phase diagrams. Metals Park, Ohio : American Society for Metals 1986.

Google Scholar

[18] J. Du,J. Yang, M. Kuwabara, W. F. Li and J. H. Peng:Mater. Trans. Vol. 49 (2008), p.139.

Google Scholar

[19] G. Han and X. F. Liu: J. Alloys Comp. Vol. 487 (2009), p.194.

Google Scholar

[20] S. F. Liu, Y. Zhang and H. Han:J. Alloys Comp. Vol. 491 (2010), p.325.

Google Scholar

[21] P. Villers, L. D. Calvert:Pearson's Handbook of Crystallographic data for Intermetallic Phases, 2nd ed.,ASM International, Materials Park, OH, 1991.

Google Scholar