Hierarchical Structures of Silicon Oxynitride Nanowires Formed by a Gallium-Catalyzed In Situ Reactive Technique

Article Preview

Abstract:

Novel doughnut-like loop structures of silicon oxynitride were grown over a Si substrate via self-assembly of ordered nanowires. These hierarchical structures were formed by metallic gallium-catalyzed vapor-liquid-solid growth at high temperature under a flow of NH3 gas. The product was characterized by XRD, SEM, EDS mapping and XPS techniques. XRD characterization confirms the formation of Si3N4 and silicon oxynitride phases. The silicon oxynitride loop structures assembled by ordered nanowires have outer diameters of 10-14 mm and wall thickness of 2-3 mm. The nanowire bundles in a single loop exhibit a petal-like growth mode. EDS mapping verifies the elemental distribution over the structure. XPS analyses disclose the binding contribution from Si3N4, silicon oxynitride and silicon oxide. The formation mechanism of the self-assembled structures was analyzed based on the growth process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

717-721

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Liu, D. Zhao, A.P. Tomsia, A.M. Minor, X. Song and E. Saiz: J. Am. Chem. Soc. Vol. 131 (2009), p.9937

Google Scholar

[2] W. Zhou, M. Yao, L. Guo, Y. Li, J. Li and S. Yang: J. Am. Chem. Soc. Vol. 131 (2009), p.2959

Google Scholar

[3] L. Xu, Y. Ding, C. Chen, L. Zhao, C. Rimkus and R. Joesten: Chem. Mater. Vol. 20 (2008), p.308

Google Scholar

[4] J.J. Hill, S.P. Cotton and K.J. Ziegler: Chem. Mater. Vol. 21 (2009), p.1841

Google Scholar

[5] X. Guo, Y. Deng, B. Tu and D. Zhao: Langmuir Vol. 26 (2010), p.702

Google Scholar

[6] J.Q. Hu, X.M. Meng, Y. Jiang, C.S. Lee and S.T. Lee: Adv. Mater. Vol. 15 (2003), p.70

Google Scholar

[7] Y. Qu, J.D. Carter and T. Guo: J. Phys. Chem. B Vol. 110 (2006), p.8296

Google Scholar

[8] Y. Li, Y. Bando and D. Golberg: Adv. Mater. Vol. 16 (2004), p.37

Google Scholar

[9] Z.W. Pan, Z.R. Dai, C. Ma and Z.L. Wang: J. Am. Chem. Soc. Vol. 124 (2002), p.1817

Google Scholar

[10] B. Zheng, Y. Wu, P. Yang and J. Liu: Adv. Mater. Vol. 14 (2002), p.122

Google Scholar

[11] Z.W. Pan, S. Dai, D.B. Beach and D.H. Lowndes: Nano Lett. Vol. 3 (2003), p.1279

Google Scholar

[12] Z.W. Pan, S. Dai, D.B. Beach and D.H. Lowndes: Appl. Phys. Lett. Vol. 83 (2003), p.3159

Google Scholar

[13] S.B. Xiang and X. Xiang: Mater. Lett. Vol. 61 (2007), p.3662

Google Scholar

[14] Z.J. Gu, F. Liu, J.Y. Howe, M.P. Paranthaman and ZW. Pan: Nanoscale Vol. 1 (2009), p.347

Google Scholar

[15] W.S. Cho, Y.S. Oh, C.S. Kim, M. Osada, M. Kakihana and D.S. Lim: J. Alloy Compd. Vol. 285 (1999), p.255

Google Scholar

[16] J. Viard, E. Beche, D. Perarnau, R. Berjoan and J. Durand: J. Eur. Ceram. Soc. Vol. 17 (1997), p. (2025)

Google Scholar

[17] G.E. Muilenberg: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1979)

Google Scholar