Synthesis of Nanocrystalline InVO4 by Hydrothermal Process and its Visible-Light Photocatalytic Activity

Article Preview

Abstract:

Monophasic orthorhombic InVO4 was synthesized using InCl3 and NH4VO3 as starting materials by a hydrothermal approach. The as-prepared InVO4 product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). It was found that the as-prepared InVO4 shows strong visible-light absorption with absorption onset of 515 nm, indicating a narrow optical band gap of 2.4 eV. Furthermore, the as-prepared InVO4 shows high visible-light photocatalytic activity for decomposition of methyl orange, which is ascribed to the strong visible-light absorption.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

734-737

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Chen, S. Shen, L. Guo, and S.S. Mao: Chem. Rev. Vol. 110 (2010), p.6503

Google Scholar

[2] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69

Google Scholar

[3] Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura and P.V. Kamat: J. Phys. Chem. Lett. Vol. 1(2010), p.2222

Google Scholar

[4] C. Hu, X. Hu, J. Guo and J. Qu: Environ. Sci. Technol. Vol. 40 (2006), p.5508

Google Scholar

[5] J. Tang, Z. Zou and J. Ye: Angew. Chem. Int. Ed. Vol. 43 (2004) p.4463

Google Scholar

[6] D. Wang, J. Tang, Z. Zou and J. Ye: Chem. Mater. Vol. 17 (2005), p.5177

Google Scholar

[7] L. Zhou, M. Yu, J. Yang, Y. Wang and C. Yu: J. Phys. Chem. C Vol. 114 (2010), p.18812

Google Scholar

[8] J.L. Gole, J.D. Stout, C. Burda, Y. Lou and X. Chen: J. Phys. Chem. B Vol. 108 (2004), p.1230

Google Scholar

[9] Z.L. Jin and G.X. Lu: Energy Fuels Vol. 19 (2005), p.1126

Google Scholar

[10] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.269

Google Scholar

[11] E. Reisner, D. J. Powell, C. Cavazza, J.C. Fontecilla-Camps and F.A. Armstrong: J. Am. Chem. Soc. Vol. 131 (2009), p.18457

Google Scholar

[12] S.U.M. Khan, M. Al-Shahry and W.B. Ingler Jr.: Science Vol. 297 (2002), p.2243

Google Scholar

[13] X. Yang, C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal and K. Klabunde: J. Catal.Vol. 252 (2007), P. 296

Google Scholar

[14] J. Ye, Z. Zou, M. Oshikiri, M. Shimoda, M. Imai and T. Shishido: Chem. Phys. Lett. Vol. 356 (2002), p.221

Google Scholar

[15] Y. Li, M. Cao and L. Feng: Langmuir Vol. 25 (2009), p.1705

Google Scholar

[16] J.M. Yao, C.K. Lee, S.J. Yang and C.S. Hwang: J. Alloy. Compd. Vol. 481 (2009), p.740

Google Scholar

[17] L. Zhang, H. Fu and C. Zhang: J. Solid State Chem. Vol. 179 (2006), p.804

Google Scholar

[18] C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R.Chen, S.F. Yu, J. Zhang, H. Gong, H. Sun and H.J. Fan: ACS Nano Vol. 3 (2009), p.3069

Google Scholar

[19] M.M. Titirici, M. Antonietti and A. Thomas: Chem. Mater. Vol. 18 (2006), p.3808

Google Scholar

[20] T. Adschiri, Y. Hakuta and K. Arai: Ind. Eng. Chem. Res. Vol. 39 (2000), p.4901

Google Scholar