Morphology of ZnO Controlled by Anion of Simple Zinc Salt

Article Preview

Abstract:

In this paper, three kinds of morphologies of ZnO crystals including particle-based lotus-like, hexagonal bipod-like (dumbbell-like) and rod-based chrysanthemum-like microstructures were controllably synthesized by using simple zinc salts (Zn(CH3COO)2·2H2O, ZnSO4·7H2O and Zn(NO3)2·6H2O) and ethanolamine as raw materials in microwave-assisted aqueous solution. The crystal structure, composition and morphology of the as-prepared products are characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometry(EDX), field-emission scanning electron microscopy(FESEM). It was found that anion of zinc salt is a dominative factor in determining the morphology of the obtained ZnO crystals. The possible formation mechanism of ZnO microstructures was simply discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

742-745

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist and A. Hagfeldt: Sol. Energy Vol. 73 (2002), p.51

Google Scholar

[2] D.C. Look: Mater. Sci. Eng. Vol. 80(2001), p.383

Google Scholar

[3] S. Cho, J. Ma, Y. Kim, Y. Sun, K.L. Wong and J.B. Ketterson: Appl. Phys. Lett. Vol. 75 (1999), p.2761

Google Scholar

[4] P. Duran, F. Capel, J. Tartaj and C. Moure: Adv. Mater. Vol. 14 (2002), p.137

Google Scholar

[5] R. Ferro, J.A. Rodríguez and P. Bertrand: Thin Solid Films Vol. 516 (2008), p.2225

Google Scholar

[6] T. Szabó, J. Németh and I. Dékány: Colloids Surf. A: Physicochem. Eng. Aspects Vol. 230 (2004), p.23

Google Scholar

[7] X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang: Science Vol. 303 (2004), p.1348

Google Scholar

[8] C.S. Lao, P.X. Gao, R.S. Yang, Y. Zhang, Y. Dai and Z.L. Wang: Chem. Phys. Lett. Vol. 417 (2006), p.358

Google Scholar

[9] Q.J. Yu, C.L. Yu, H.B. Yang, W.Y. Fu, L.X. Chang, J. Xu, R.H. Wei, H.D. Li, H.Y. Zhu, M.H. Li and G.T. Zou: Inorg. Chem. Vol. 46 (2007), p.6204

Google Scholar

[10] X.F. Zhou, Z.L. Hu, Y.Q. Fan, S. Chen, W.P. Ding and N.P. Xu: J. Phys. Chem. Vol. 112 (2008), p.11722

Google Scholar

[11] Z.Y. Zhang, X.H. Li, C.H. Wang, L.M. Wei, Y.C. Liu and C.L. Shao: J. Phys. Chem. C Vol. 113 (2009), p.19397

Google Scholar

[12] Z.J. Yan, K. Zhu and W.P. Chen: Mater. Lett. Vol. 63 (2009), p.486

Google Scholar

[13] J.Z. Yin, Q.Y. Lu, Z.N. Yu, J.J. Wang, H. Pang and F. Gao: Cryst. Growth Des. Vol. 10 (2010), p.40

Google Scholar

[14] H.M. Hu, C.H. Deng and X.H. Huang: Mater. Chem. Phys. Vol. 121 (2010), p.364

Google Scholar

[15] J.L. Zhao, X.X. Wang, J.J. Liu, Y.C. Meng, X.W. Xu and C.C. Tang: Mater. Chem. Phys. Vol. 126 (2011), p.555

Google Scholar

[16] W.J. Li, E.W. Shi, W.Z. Zhong and Z.W. Yin: J. Crystal Growth Vol. 203 (1999), p.186

Google Scholar