Novel Mechanochemical Synthesis of Carbon Nanomaterials by a High-Speed Ball-Milling

Article Preview

Abstract:

A novel mechanochemical approach to produce sophisticated carbon nanomaterials is reported. It is demonstrated that carbon nanostructures such as carbon nanotubes and carbon onions are synthesized by high-speed ball-milling of steel balls. It is considered that the gas-phase reaction takes place around the surface of steel balls under local high temperatures induced by the collision energy in ball-milling process, which results in phase separated unique carbon nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

755-758

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.M. Ajyan and J.M. Tour: Nature Vol.447 (2007), p.1066

Google Scholar

[2] A. Hirata and N. Yoshioka: Trib. Int. Vol.37 (2004), p.893

Google Scholar

[3] S. Berber, Y.K. Kwon and D. Tománek: Phy. Rev. Lett. Vol.91 (2003), p.165503

Google Scholar

[4] S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi: Chem. Phys. Lett. Vol.309 (1999), p.165

DOI: 10.1016/s0009-2614(99)00642-9

Google Scholar

[5] Z. Yao, H.W.C. Postma, L. Balents and C. Dekker: Nature Vol.402 (1999) p.273

Google Scholar

[6] N. Chen, M.T. Lusk, A.C.T. van Duin and W.A. Goddard III: Phys. Rev. B. Vol.72 (2005), p.85416

Google Scholar

[7] S. Ohara, Z. Tan, J. Noma, T. Hanaichi, K. Sato and H. Abe: Solid State Comm. Vol.150 (2010), p.198

DOI: 10.1016/j.ssc.2009.10.035

Google Scholar

[8] Z. Tan, H. Chihara, C. Koike, H. Abe, K. Kaneko, K. Sato and S. Ohara: Astronomical Journal Vol.140 (2010), p.1456

Google Scholar

[9] S. Ohara, K. Sato, Z. Tan, H. Shimoda, M. Ueda and T. Fukui: J. Alloys and Compounds Vol.504 (2010), p.L17

Google Scholar

[10] S. Tomita, M. Fujii, S. Hayashi and K. Yamamoto: Chem. Phys. Lett. Vol.305 (1999), p.225

Google Scholar

[11] S. Huan, B. Maynor, X. Cai and J. Liu: Adv. Mater. Vol.15 (2003), p.1651

Google Scholar

[12] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura and S. Iijima: Science Vol.306 (2004), p.1362

DOI: 10.1126/science.1104962

Google Scholar

[13] T. Yamada, T. Namai, K. Hata, D.N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura and S. Iijima: Nature Nanotech. Vol.1 (2006), p.131

DOI: 10.1038/nnano.2006.95

Google Scholar

[14] Y. Yao, Q. Li, J. Zhang, R. Liu, L. Jiao, Y.T. Zhu and Z. Liu: Nature Mater. Vol.6 (2007), p.283

Google Scholar

[15] W.A. de Heer, A. Châtelain and D. Ugarte: Science Vol.270 (1995), p.1179

Google Scholar

[16] H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert and R.E. Smalley: Nature Vol.384 (1996), p.147

Google Scholar

[17] S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung and C.M. Lieber: Nature Vol.394 (1998), p.52

Google Scholar

[18] R. Saito, G. Dresselhaus and M.S. Dresselhaus: Physical properties of carbon nanotubes (Imperial College Press, London 1998).

Google Scholar

[19] R.H. Baughman, A.A. Zakhidov and W.A. de Heer: Science Vol.297 (2002), p.787

Google Scholar

[20] X. Xu and M.M. Thwe: Appl. Phys. Lett. Vol.81 (2002), p.2833

Google Scholar

[21] Y. Ren, Y.Q. Fu, K. Liao, F. Li and H.M. Cheng: Appl. Phys. Lett. Vol.84 (2004), p.2811

Google Scholar

[22] V.P. Dravid, J.J. Host, M.H. Teng, B. Elliott, J. Hwang, D.L. Johnson, T.O. Mason and J.R. Weertman: Nature Vol.374 (1995), p.602

DOI: 10.1038/374602a0

Google Scholar

[23] F. Dachille and R. Roy: Nature Vol.186 (1960), p.34

Google Scholar