[1]
N.B. Kirk and J.V. Wood: Br. Cera. Trans. Vol. 93 (1994), p.25
Google Scholar
[2]
P. Bera and M.S. Hegde: Catal. Lett. Vol. 79 (2002), p.75
Google Scholar
[3]
F. Fajardie, J.F. Tempere, J.M. Manoli, O. Touret, G. Blanchard and G. Djega-Mariadassou: J. Catal. Vol. 179 (1998), p.469
DOI: 10.1023/a:1019021215129
Google Scholar
[4]
T. Chafik, O. Dulaurent, J.L. Gass and D. Bianchi: J. Catal. Vol. 179 (1998), p.503
Google Scholar
[5]
J. Guzman, S. Carrettin and A. Corma: J. Am. Chem. Soc. Vol. 127 (2005), p.3286
Google Scholar
[6]
S.B. Bhaduri, A. Chakraborty and R.M. Rao: J. Am. Ceram. Soc. Vol. 71 (1998), p. C-410
Google Scholar
[7]
E. Perry Murray, T. Tsai and S.A. Barnett: Nature Vol. 400 (1999), p.649
Google Scholar
[8]
P. Chen and W. Chen: J. Am. Ceram. Soc. Vol. 76 (1993), p.1577
Google Scholar
[9]
P. Janos and M. Petrak: J. Mater. Sci. Vol. 26 (1991), p.4062
Google Scholar
[10]
J.M. Heintz and J.C. Bernier: J. Mater. Sci. Vol. 21 (1986), p.1569
Google Scholar
[11]
K. Higashi, K. Sonoda, H. Ono, S. Sameshima and Y. Hirata: Key Eng. Mater. Vol. 159-160 (1999), p.25
Google Scholar
[12]
M.M.A. Sekar, S.S. Manoharan and K.C. Patil: J. Mater. Sci. Lett. Vol. 9 (1990), p.1205
Google Scholar
[13]
T. Mokkelbost, I. Kaus, T. Grande and M.A. Einarsrud: Chem. Mater. Vol. 16 (2004), p.5489
Google Scholar
[14]
L.P. Li, X.M. Lin, G.S. Li and H. Inomata: J. Mater. Res. Vol. 16 (2001), p.3207
Google Scholar
[15]
E. Matijevic and W.P. Hsu: J. Colloid and Interface Sci. Vol. 118 (1987), p.506
Google Scholar
[16]
T.J. Kirk and J. Winnick: J. Electrochem. Soc. Vol. 140 (1993), p.3494
Google Scholar
[17]
A. Suda, H. Sobukawa, T. Suzuki, T. Kandori, Y. Ukyo and M. Sugiura: Toyota chu-ou Kenkyusho R&D rebyu Vol. 33 (1998), p.3
Google Scholar
[18]
Y.C. Zhou and M.N. Rahaman: J. Mater. Res. Vol. 8 (1993), p.1680
Google Scholar
[19]
M. Hirano and E. Kato: J. Am. Ceram. Soc. Vol. 79 (1996), p.777
Google Scholar
[20]
M. Hirano and E. Kato: J. Mater. Sci. Lett. Vol. 15 (1996), p.1249
Google Scholar
[21]
Y. Hakuta, S. Onai, S. Terayama, T. Adschiri and K. Arai: J. Mater. Sci. Lett. Vol. 17 (1998), p.1211
DOI: 10.1023/a:1006597828280
Google Scholar
[22]
M. Radović, Z.D. Dohčević-Mitrović, A. Golubović, B. Matović, M. Šćepanović and Z.V. Popović: Acta Physica Polonica A Vol. 116 (2009), p.614
DOI: 10.12693/aphyspola.116.614
Google Scholar
[23]
J.S. Lee and S.C. Choi: Mater. Lett. Vol. 58 (2004), p.390
Google Scholar
[24]
X.T. Dong, J.H. Yan and Y. Wei: Rare Metal Mater. Eng. Vol. 1 (2002), p.312
Google Scholar
[25]
H. Hayashi and Y. Hakuta: Materials Vol. 3 (2010), p.3794
Google Scholar
[26]
A.A. Galkin, B.G. Kostyuk, N.N. Kuznetsova, A.O. Turakulova, V.V. Lunin and M. Polyakov: Kinet. and Catal. Vol. 42 (2001), p.154
DOI: 10.1023/a:1010496830238
Google Scholar
[27]
J.A. Dean: Lange's handbook of chemistry (McGraw-Hill Book Company, New York 1985).
Google Scholar
[28]
J. Lee and A.S. Teja: J. of Supercritical Fluid Vol. 35 (2005), p.83
Google Scholar
[29]
T. Adschiri and K. Arai, in: Supercritical fluid technology in materials science and engineering (syntheses, properties and applications), edited by Y.P. Sun, Hydrothermal synthesis of metal oxide nanoparticles under supercritical conditions (2003).
DOI: 10.1201/9780203909362.ch8
Google Scholar
[30]
T. Adschiri, Y. Hakuta, K. Sue and K. Arai: J. Nanopart. Res. Vol. 3 (2001), p.227
Google Scholar