Batch Supercritical Hydrothermal Synthesis of CeO2 Nanoparticles

Article Preview

Abstract:

CeO2 nanoparticles with diameter of about 5 nm were prepared by batch supercritical hydrothermal synthesis method at 390 °C without additional treatment. It was found that the characteristics of products depended on the pH value, reactant concentration (C0), and reaction temperature. The reaction time and coexisting cations (Li+, Na+ and K+) had little effect on the size and morphology of CeO2 particles. Uniform CeO2 nanoparticles were synthesized at 390 °C, pH = 9 and C0 = 0.06 M. The mechanism for batch supercritical hydrothermal synthesis of CeO2 nanoparticles is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

773-780

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.B. Kirk and J.V. Wood: Br. Cera. Trans. Vol. 93 (1994), p.25

Google Scholar

[2] P. Bera and M.S. Hegde: Catal. Lett. Vol. 79 (2002), p.75

Google Scholar

[3] F. Fajardie, J.F. Tempere, J.M. Manoli, O. Touret, G. Blanchard and G. Djega-Mariadassou: J. Catal. Vol. 179 (1998), p.469

DOI: 10.1023/a:1019021215129

Google Scholar

[4] T. Chafik, O. Dulaurent, J.L. Gass and D. Bianchi: J. Catal. Vol. 179 (1998), p.503

Google Scholar

[5] J. Guzman, S. Carrettin and A. Corma: J. Am. Chem. Soc. Vol. 127 (2005), p.3286

Google Scholar

[6] S.B. Bhaduri, A. Chakraborty and R.M. Rao: J. Am. Ceram. Soc. Vol. 71 (1998), p. C-410

Google Scholar

[7] E. Perry Murray, T. Tsai and S.A. Barnett: Nature Vol. 400 (1999), p.649

Google Scholar

[8] P. Chen and W. Chen: J. Am. Ceram. Soc. Vol. 76 (1993), p.1577

Google Scholar

[9] P. Janos and M. Petrak: J. Mater. Sci. Vol. 26 (1991), p.4062

Google Scholar

[10] J.M. Heintz and J.C. Bernier: J. Mater. Sci. Vol. 21 (1986), p.1569

Google Scholar

[11] K. Higashi, K. Sonoda, H. Ono, S. Sameshima and Y. Hirata: Key Eng. Mater. Vol. 159-160 (1999), p.25

Google Scholar

[12] M.M.A. Sekar, S.S. Manoharan and K.C. Patil: J. Mater. Sci. Lett. Vol. 9 (1990), p.1205

Google Scholar

[13] T. Mokkelbost, I. Kaus, T. Grande and M.A. Einarsrud: Chem. Mater. Vol. 16 (2004), p.5489

Google Scholar

[14] L.P. Li, X.M. Lin, G.S. Li and H. Inomata: J. Mater. Res. Vol. 16 (2001), p.3207

Google Scholar

[15] E. Matijevic and W.P. Hsu: J. Colloid and Interface Sci. Vol. 118 (1987), p.506

Google Scholar

[16] T.J. Kirk and J. Winnick: J. Electrochem. Soc. Vol. 140 (1993), p.3494

Google Scholar

[17] A. Suda, H. Sobukawa, T. Suzuki, T. Kandori, Y. Ukyo and M. Sugiura: Toyota chu-ou Kenkyusho R&D rebyu Vol. 33 (1998), p.3

Google Scholar

[18] Y.C. Zhou and M.N. Rahaman: J. Mater. Res. Vol. 8 (1993), p.1680

Google Scholar

[19] M. Hirano and E. Kato: J. Am. Ceram. Soc. Vol. 79 (1996), p.777

Google Scholar

[20] M. Hirano and E. Kato: J. Mater. Sci. Lett. Vol. 15 (1996), p.1249

Google Scholar

[21] Y. Hakuta, S. Onai, S. Terayama, T. Adschiri and K. Arai: J. Mater. Sci. Lett. Vol. 17 (1998), p.1211

DOI: 10.1023/a:1006597828280

Google Scholar

[22] M. Radović, Z.D. Dohčević-Mitrović, A. Golubović, B. Matović, M. Šćepanović and Z.V. Popović: Acta Physica Polonica A Vol. 116 (2009), p.614

DOI: 10.12693/aphyspola.116.614

Google Scholar

[23] J.S. Lee and S.C. Choi: Mater. Lett. Vol. 58 (2004), p.390

Google Scholar

[24] X.T. Dong, J.H. Yan and Y. Wei: Rare Metal Mater. Eng. Vol. 1 (2002), p.312

Google Scholar

[25] H. Hayashi and Y. Hakuta: Materials Vol. 3 (2010), p.3794

Google Scholar

[26] A.A. Galkin, B.G. Kostyuk, N.N. Kuznetsova, A.O. Turakulova, V.V. Lunin and M. Polyakov: Kinet. and Catal. Vol. 42 (2001), p.154

DOI: 10.1023/a:1010496830238

Google Scholar

[27] J.A. Dean: Lange's handbook of chemistry (McGraw-Hill Book Company, New York 1985).

Google Scholar

[28] J. Lee and A.S. Teja: J. of Supercritical Fluid Vol. 35 (2005), p.83

Google Scholar

[29] T. Adschiri and K. Arai, in: Supercritical fluid technology in materials science and engineering (syntheses, properties and applications), edited by Y.P. Sun, Hydrothermal synthesis of metal oxide nanoparticles under supercritical conditions (2003).

DOI: 10.1201/9780203909362.ch8

Google Scholar

[30] T. Adschiri, Y. Hakuta, K. Sue and K. Arai: J. Nanopart. Res. Vol. 3 (2001), p.227

Google Scholar