Effects of Anion on the Morphologies of ZnO Synthesized by an Aqueous Solution Method

Article Preview

Abstract:

ZnO were rapidly synthesized using different zinc salts (Zn(NO3)2, Zn(CH3CO2)2, ZnCl2 and ZnSO4) by an aqueous solution method at 90°C. The products were characterized by X-ray diffractometry and scanning electron microscopy. The results show that the anions have remarkable effects on the morphologies of ZnO. When Zn(NO3)2, Zn(CH3CO2)2 or ZnCl2 was used, ZnO was obtained with ellipsoidal, under-developed ellipsoidal and nano-particles morphologies, respectively. In the case of ZnSO4, layered basic zinc sulfate was obtained. The remarkable effects of anions on ZnO can be ascribed to the adsorption of the anions on the surface of ZnO, which hinders the further growth of ZnO nuclei. The effect of SO42- was further investigated by changing the mole ratio of SO42- to NO3-.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

781-785

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, and Y.Q. Yan: Adv. Mater. Vol. 15 (2003), p.353.

Google Scholar

[2] Z.L. Wang: Adv. Mater. Vol. 15 (2003), p.432.

Google Scholar

[3] C. Pacholski, A. Kornowski, and H. Weller: Angew. Chem. Int. Edit. Vol. 41 (2002), p.1188.

Google Scholar

[4] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang: Science Vol. 292 (2001), p.1897.

DOI: 10.1126/science.1060367

Google Scholar

[5] Z.W. Pan, Z.R. Dai, and Z.L. Wang: Science Vol. 291 (2001), p.1947.

Google Scholar

[6] X.D. Wang, P.X. Gao, J. Li, C.J. Summers, and Z.L. Wang: Adv. Mater. Vol. 14 (2002), p.1732.

Google Scholar

[7] W.L. Hughes and Z.L. Wang: Appl. Phys. Lett. Vol. 86 (2005), p.043106.

Google Scholar

[8] P.X. Gao and Z.L. Wang: J. Am. Chem. Soc. Vol. 125 (2003), p.11299.

Google Scholar

[9] H.Q. Yan, R.R. He, J. Johnson, M. Law, R.J. Saykally, and P.D. Yang: J. Am. Chem. Soc. Vol. 125 (2003), p.4728.

Google Scholar

[10] J.Y. Lao, J.G. Wen, and Z.F. Ren, Nano Lett. Vol. 2 (11) (2002), p.1287.

Google Scholar

[11] D. Zhang, D. Guo, X. Pu, X. Shao, R. Liu, L. Li, and X. Qian: Mater. Lett. Vol. 63 (2009), p.2290.

Google Scholar

[12] L. Lin, H. Watanabe, M. Fuji, and M. Takahashi: Adv. Powder Technol. Vol. 20 (2009), p.185.

Google Scholar

[13] R.A. McBride, J.M. Kelly, and D.E. McCormack: J. Mater. Chem. Vol. 13 (2003), p.1196.

Google Scholar

[14] Z.S. Hu, G. Oskam, R.L. Penn, N. Pesika, and P.C. Searson: J. Phys. Chem. B Vol. 107 (2003), p.3124.

Google Scholar

[15] X. Xu, H. Pang, Z. Zhou, X. Fan, S. Hu, Y. Wang: Adv. Powder Technol. doi:10.1016/j.apt.2010.09.017 (in press).

Google Scholar

[16] A. Guinier: X-ray diffraction in crystals, imperfect crystals, and amorphous bodies (Freeman, San Francisco 1963).

DOI: 10.1126/science.142.3599.1564

Google Scholar

[17] X. Pu, D. Zhang, X. Yi, X. Shao, W. Li, M. Sun, L. Li, and X. Qian: Adv. Powder Technol. Vol. 21 (2010), p.344.

Google Scholar

[18] S.S. Kim, H.S. Kim, S.G. Kim, and W.S. Kim: Ceram. Int. Vol. 30 (2004), p.171.

Google Scholar

[19] S.M. Lee, S.N. Cho, and J. Cheon: Adv. Mater. Vol. 15 (2003), p.441.

Google Scholar