Enhancement of Thermal Conductivity with Carbon-Encapsulated Copper Nano-Particle for Nanofluids

Article Preview

Abstract:

Carbon-encapsulated copper nanoparticles were synthesized by a carbon arc discharge method. The particles were characterized in detail by transmission electron microscope, high-resolution transmission electron microscopy, thermogravimetric and differential scanning calorimetry. The result showed that the outside graphitic carbon layers effectively prevented unwanted oxidation of the copper inside. The dispersion behaviors and thermal conductivity of Carbon-encapsulated copper nanoparticles in water with different dispersants were investigated under different pH values. The results showed that the dispersion and thermal conductivity enhancements of Carbon-encapsulated copper nanoparticles nanofluids are higher than that of copper nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

801-805

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.U.S. Choi, ASME 231 (1995) 99.

Google Scholar

[2] K. Hong, T.-K. Hong, H.-S. Yang, Appl. Phys. Lett. 88 (3) (2006) 31901.

Google Scholar

[3] C.H. Li, G.P. Peterson, J. Appl. Phys. 99 (8) (2006) 084314.

Google Scholar

[4] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567.

Google Scholar

[5] Y.M. Xuan, Q. Li, W. Hu, AIChE J. 49 (2003) 1038.

Google Scholar

[6] J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, Mater. Res. Soc. 457 (1997) 3.

Google Scholar

[7] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78 (2001) 718.

Google Scholar

[8] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280.

Google Scholar

[9] X.F. Li, D.S. Zhu, Chem. Ind. Eng. Prog. 25 (2006) 875.

Google Scholar

[10] Y.M. Xuan, Q. Li, Int. J. Heat Fluid Flow 21 (2000) 58.

Google Scholar

[11] S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44 (2005) 367.

Google Scholar

[12] X.F. Li, D.S. Zhu, X.J. Wang, J. Colloid Interface Sci. 310 (2007) 456.

Google Scholar

[13] J.A. Eastman, S.U.S. Choi, S. Li,W. Yu, L.J. Thompson, Appl. Phys. Lett.78 (2001) 718.

Google Scholar

[14] H. Xie, H. Lee, W. Youn, M. Choi, J. Appl. Phys. 94 (2003) 4967.

Google Scholar

[15] S.U.S. Choi, Z.G. Zhang,W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys.Lett. 79 (2001) 2252.

Google Scholar

[16] M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson,Appl. Phys. Lett. 80 (2002) 2767.

Google Scholar

[17] B.M. Ginzburg, L.A. Shibaev, O.F. Kireenko, Russ. J. Appl. Chem. 75 (2002) 1330.

Google Scholar

[18] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett.78 (6) (2001) 718

Google Scholar

[19] Dongsheng Zhu, Xinfang Li , Nan Wang. Current Applied Physics 9 (2009) 131.

Google Scholar

[20] J.I. Pascual, J.Mendez , J.Gomez-Herrero et al . Science , 1995 ,267(5205) 1793

Google Scholar

[21] P.G. Collins, A.Zettl , H.Bando et al . Science , 1997 ,278 (5335) 100

Google Scholar

[22] K.Bubkle , H.Gnewuch , M.Hempstead et al . Appl . Phys. Lett . ,1997 ,71 (14) (1906)

Google Scholar

[23] XL Dong, Z D Zhang , S R Jin et al . J . Mater. Res. , 1999 ,14 (5):1782

Google Scholar

[24] Haitao Zhu, Canying Zhang, Appl. Phys. Lett. 89 (2006) 023123.

Google Scholar

[25] J.A. Reglero, D. Lehmhus, M. Wichmann J.A. in: International Conference Advanced Metallic Materials, Smolenice Slovakia, November 2003, p.253.

Google Scholar