Electronic Transport Properties of the Azobenzene-Based Optical Molecular Switch with Different Substituents

Article Preview

Abstract:

By applying nonequilibrium Green’s function formalism combined first-principles density functional theory, we investigate the electronic transport properties of the azobenzene -based optical molecular switch with different substituents. Theoretical results show that the donor/acceptor substituent plays an important role in the electronic transport of molecular devices. The switching performance can be improved to some extent through suitable donor and acceptor substituents.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

816-819

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R. Heath, M.A. Ratner, Phys. Today Vol.56 (2003), p.43.

Google Scholar

[2] A.Halbritter, S. Csonka, G. Mihaly, E. Jurdik, O. Y. Kolesnychenko, O. I. Shklyarevskii, S. Speller, H. van Kempen, Phys. Rev. B Vol. 68 (2003), p.035417.

DOI: 10.1103/physrevb.68.035417

Google Scholar

[3] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour, Science Vol.278 (1997), p.252.

Google Scholar

[4] R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, J.M. van Ruitenbeek, Nature (London) Vol.419 (2002), p.906.

DOI: 10.1038/nature01103

Google Scholar

[5] A.N. Pasupathy, R.C. Bialczak, J. Martinek, L.A.K. Donev, P.L. McEuen, D.C. Ralph, Science Vol.306 (2004), p.86.

DOI: 10.1126/science.1102068

Google Scholar

[6] S. Csonka, A. Halbritter, O.I. Shklyarevskii, S. Speller, H. van Kempen, Phys. Rev. Lett. Vol. 93 (2004), p.016802.

DOI: 10.1103/physrevlett.93.016802

Google Scholar

[7] P. Pati, S. P. Karna, Phys. Rev. B Vol.69 (2004), p,155419.

Google Scholar

[8] G. Emberly, G. Kirczenow, Phys. Rev. Lett. Vol.91 (2003), p.188301.

Google Scholar

[9] J.Chen, C. Nuckolls, T. Roberts, J. E. Klare, S. Lindsay, NanoLett. 5 (2005) 503.

Google Scholar

[10] P. E. Kornilovitch, A.M. Bratkovsky, R. S. Williams, Phys. Rev. B Vol.66 (2002), p.245413.

Google Scholar

[11] N. Katsonic, T. Kudernac, M. Walko, S.J. van der Molen, B.J. van Wees, B.L. Feringa, Adv. Mater. Vol.18 (2006), p.1397.

DOI: 10.1002/adma.200600210

Google Scholar

[12] M. Irie, Chem. Rev. Vol.100 (2000), p.1685

Google Scholar

[13] D. Dulic, G. Speyer, O.F. Sankey, Phys. Rev. Lett. Vol. 91 (2003), p.207402

Google Scholar

[14] C.Zhang, M.H.Du, H.P. Cheng, A.E. Roitberg, J.L. Krause, Phys. Rev. Lett. Vol. 92(2006) p.158301

Google Scholar

[15] H. Chen,J. Q.Lu,J.Wu,R.Note,H.Mizuseki,Y.Kawazoe, Phys. Rev. B Vol. 67(2003), p.113408

Google Scholar

[16] M. Brandbyge, J.-L. Mozos, P. Ordejo'n, J. Taylor, and K. Stokbro, Phys. Rev. B Vol. 65 (2002), p.165401

Google Scholar

[17] Z. H. Zhang, Z. Yang, J. H. Yuan, and X. Q. Deng, J. Chem. Phys. Vol.129 (2008), p.094702

Google Scholar

[18] Z. H. Zhang, Q. Z. Yang, J. H. Yuan, and M. Qiu, Chin. Sci. Bull. Vol.52(2007), p.10

Google Scholar