Periodic Changes Effects of Distance between Magnetic Barriers on Electron Transport in Nanostructure

Article Preview

Abstract:

I theoretically investigate the spin Polarization and transmission of the electrons in a nanostructure consisting barriers with periodic, parallel and also anti parallel magnetization .also I investigate polarization when distance between barriers is constant, or is increased, or is decreased periodically. These observable quantities are found to be strongly affected by both the magnetic configuration and the number of the periodic magnetic barriers. When the number of periods increases, in parallel magnetization for periodic increasing distance the polarization is enhanced so in parallel configuration it is better that distance between barriers to be increasing periodically. I investigate Polarization in these configuration in both delta function approximation and modulated magnetic barriers in x direction. This Polarization can be used in spintronics device.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

833-838

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. Lett. 72 (1994) 1518(b).

Google Scholar

[2] M.-W. Lu, Phys. Lett. A 339 (2005) 152.

Google Scholar

[3] F.M. Peeters, A. Matulis, Phys. Rev. B 48 (1993) 15166.

Google Scholar

[4] G. Papp, F.M. Peeters, Appl. Phys. Lett. 82 (2003) 3570.

Google Scholar

[5] M. Sharma, S.X. Wang, J.H. Nickel, Phys. Rev. Lett. 82 (1999) 616.

Google Scholar

[6] P. Pfeffer, W. Zawadzki, Phys. Rev. B 59 (1999) R5312.

Google Scholar

[7] S.J. Bending, K. von Klitzing, K. Ploog, Phys. Rev. Lett. 65 (1990) 1060.

Google Scholar

[8] C.M. Hu, J. Nitta, A. Jensen, J.B. Hansen, H. Takayanagi, Phys. Rev. B 63 (2001) 125333.

Google Scholar

[9] V. Kubrak, F. Rahman, B.L. Gallagher, P.C. Main, M. Henini, C.H. Marrows, M.A. Howson, Appl. Phys. Lett. 74 (1999) 2507.

DOI: 10.1063/1.123022

Google Scholar

[10] B.T. Jonker, K.H. Walker, E. Kisher, G.A. Prinz, C. Carbone, Phys. Rev. Lett. 57 (1986) 142.

Google Scholar

[11] F.G. Monzon, M. Johnson, M.L. Roukes, Appl. Phys. Lett. 71 (1997) 3087.

Google Scholar

[12] M. Johnson, B.R. Bennet, M.J. Yang, M.M. Miller, B.V. Shangbrook, Appl. Phys. Lett. 71 (1997) 974.

Google Scholar

[13] V. Kubrak, A.C. Neumann, B.L. Gallagher, P.C. Main, M. Henini, C.H. Marrows, M.A. Howson, Physica E 6 (2000) 755. [23] J.-D. u, L. Shao, Y.-L. Hou, T.-P. Hou, Solid State Commun. 141 (2007) 61.

DOI: 10.1016/s1386-9477(99)00196-4

Google Scholar

[14] G. Papp, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 72 (2005) 115315.

Google Scholar