Micro-Stress Transfer of CNT and CNT-Interface in CNT Reinforced Mg-Matrix Composites

Article Preview

Abstract:

The aim of the present paper is that, utilizing finite element method, considering the influence of different length of CNTs and different strength of interface to investigate the micro stress distribution of CNT reinforced magnesium matrix composite. When analyzing, the material character of magnesium is regarded as anisotropic. Utilizing the primary theory to calculate the anisotropic elasticity modulus; Define the reasonable length of CNTs; Considering the influence on the micro stress distribution of different interface strength.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

851-856

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kaczmar J W etal. The production and application of metal matrix composites materials[J].Journal of materials processing technology,2000,106:58-67

Google Scholar

[2] Qian D, Dickey EC, Andrews R etc. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Apply Phys Lett 2000,67(20):2868-2870

DOI: 10.1063/1.126500

Google Scholar

[3] S.J.V Frankland, V.M. Hark, G.M. Odegard, etc. The transfer behavior of polymer- nanutube composites from molecular dynamics simulation[J]. Composites science and Technology 63(2003): 1655-1661

DOI: 10.1016/s0266-3538(03)00059-9

Google Scholar

[4] Iijima S, Brabec C, Maiti A, etc. Structural flexibility of Carbon nanotubes[J]. J chem Phy 1996, 104: 2089-2092

DOI: 10.1063/1.470966

Google Scholar

[5] Hernandez E, Goze C, Bernier P, etc. Elastic properties of C and composite nanutubes[J]. Phys Rev Lett 1998, 80(20):4502-4505

Google Scholar

[6] Sanchez- Portal D, Artacho E, Soler JM, ete. Ab initio steucuural elastic and vibrational properties of carbon nanotubes[J]. Phys Rev B 1999,59:12678-12689

DOI: 10.1103/physrevb.59.12678

Google Scholar

[7] Li C, Chou T-w. A structural mechanics approach for the analysis of carbon nanotubes[J]. Int solid Struct 2003,40:2487-2499

Google Scholar

[8] Ru C Q. Effective bending stiffness of carbon nanotubes[J]. Phys Rev B 2002, 62:9973-9976

DOI: 10.1103/physrevb.62.9973

Google Scholar

[9] K.I. Tserpes, P.Papanikos. Finite element modeling of single-walled carbon nanotubes[J]. Composites: Part B 36(2005) 468-477

DOI: 10.1016/j.compositesb.2004.10.003

Google Scholar

[10] Luo Dongmei, Wang Wenxue, Takao Yoshihiro. Application of homogenization method on the analysis of micro-stress distribution[J]. Acta materiae compositae sinica VOL24(3), 2007: 186-191 in non-continuous carbon nanotube reinforced composites

Google Scholar

[11] H.Wan, F. Delale, L. shen. Effect of CNT length and CNT-matrix interphase in carbon nanutube(CNT) reinforced composites

DOI: 10.1016/j.mechrescom.2004.10.011

Google Scholar

[11] Shen L.X, Yi S. An effective inclusion model for effective moduli of heterogeneous materials with ellipsoidal inhomogeneities[J]. International journal of solids and structures 2001, 38 (32-33), 5789-5799

DOI: 10.1016/s0020-7683(00)00370-x

Google Scholar

[12] Shen L.X, li J. Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase[J]. International journal of solids and structures 2003,40: 1393-1401

DOI: 10.1016/s0020-7683(02)00659-5

Google Scholar

[13] Wise K., Hinkley J.. Molecular dynamics simulations of nanotube-polymer composites[J]. American Physical Society Spring Meeting, April 12-16,2001, Seattle, WA

Google Scholar

[14] LI HaiJun. Finite element modelling and simulations of carbon nanotubes based on atomic potentials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics. [15] Bing Jiang, Charlie Liu, etc. Maximum nanotube volume fraction and its effect on overall elastic propertiesof nanotube-reinforced composites[J]. Composites: Part B 40 (2009) 212–217

DOI: 10.1016/j.compositesb.2008.11.003

Google Scholar