Microstructure and Magnetic Behavior of One-Dimensional Co0.5Zn0.5Fe2O4 Nanofibers

Article Preview

Abstract:

One-dimensional Co0.5Zn0.5Fe2O4 nanostructures (nanofibers) with an average diameter of 154 nm were fabricated by electrospinning. These nanofibers were characterized by X–ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Magnetic hysteresis loops were measured for randomly oriented and aligned Co0.5Zn0.5Fe2O4 nanofibers, in comparison with the corresponding powder sample synthesized using the conventional sol-gel process. The differences in magnetic properties are observed between the Co0.5Zn0.5Fe2O4 nanofibers and powders, and these differences mainly arise from the grain size and morphological variations between these two materials. In determining the magnetization ease axis for the aligned Co0.5Zn0.5Fe2O4 nanofibers the shape anisotropy is slightly dominant competing with the magnetocrystalline anisotropy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

861-865

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.Y. Zhang and Y.F. Zhang: J. Magn. Magn. Mater. Vol. 321, (2009), p. L15

Google Scholar

[2] L. Luo, B.D. Sosnowchik and L. W. Lin: Appl. Phys. Lett. Vol. 90 (2007), p.093101

Google Scholar

[3] D. Li, T. Herricks and Y. N. Xia: Appl. Phys. Lett. Vol. 83 (2003), p.4586

Google Scholar

[4] Z. L. Wang, X. J. Liu, M. F. Lv, P. Chai, Y. Liu, X. F. Zhou and J. Meng: J. Phys. Chem. C Vol. 112 (2008), p.15171

Google Scholar

[5] L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, C. C. Tang, and D. Golberg: Adv. Mater. Vol. 17 (2005), p.213

Google Scholar

[6] C. K. Xu, G. D. Xu, Y. K. Liu, X. L. Zhao and G. H. Wang: Scr. Mater. Vol. 46 (2002), p.789

Google Scholar

[7] A. M. Morales and C. M. Lieber: Science Vol. 279 (1998), p.208

Google Scholar

[8] Z. T. Zhang, D. A. Blom, Z. Gai, J. R. Thompson, J. Shen and S. Dai: J. Am. Chem. Soc. Vol. 125 (2003), p.7528

Google Scholar

[9] K. He, C. Y. Xu, L. Zhen and W. Z. Shao: Mater. Lett. Vol. 61 (2007), p.3159

Google Scholar

[10] J. R. Morber, Y. Ding, M. S. Haluska, Y. Li, J. P. Liu, Z. L. Wang and R. L. Snyder: J. Phys. Chem. B Vol. 110 (2006), p.21672

Google Scholar

[11] D. Li, J. T. McCann and Y. N. Xia: J. Am. Ceram. Soc.Vol. 89 (2006), p.1861

Google Scholar

[12] J. Xiang, X. Q. Shen, F. Z. Song and M. Q. Liu: Chin. Phys. B Vol. 18 (2009), p.4960

Google Scholar

[13] M. Sugimoto: J. Am. Ceram. Soc. Vol. 82 (1999), p.269

Google Scholar

[14] L. Wang and F. S. Li: Chin. Phys. B Vol. 17 (2008), p.1858

Google Scholar

[15] D. Ravinder and P. Shalini: Appl. Phys. Lett. Vol. 82 (2003), p.4738

Google Scholar

[16] X. Q. Shen, J. Xiang, F. Z. Song and M. Q. Liu: Appl. Phys. A Vol. 99 (2010), p.189

Google Scholar

[17] L. J. Zhao, H. Yang, Y. M. Cui, X. P. Zhao and S. H. Feng: J. Mater. Sci. Vol. 42 (2007), p.4110

Google Scholar

[18] I. S. Jacobs and C. P. Bean: Phys. Rev. Vol. 100 (1955), p.1060

Google Scholar

[19] V. S. Rani, S. S. Yoon, B. P. Rao and C. Kim: Mater. Chem. Phys. Vol. 112 (2008), p.1133

Google Scholar