Structure and Properties of Doped ZnO Nanopowders Synthesized by Methanol Alcoholysis Method

Article Preview

Abstract:

Pured ZnO, Al doped ZnO and Al-In co-doped ZnO nanopowders were synthesized by the methanol alcoholysis method at 130 °C. Structure, morphology and optical properties of ZnO nanopowders were characterized using X-ray diffraction, Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and Photoluminescence (PL) spectra. The results show that ZnO nanopowders can be obtained in methanol solution at low temperature (130 °C). TEM images show that Al doped ZnO nanocrystals grow along the [002] axis quicker than other axes. FTIR spectra show that ZnO nanocrystals synthesized by the methanol alcoholysis include a little organic impurity. PL spectrums reveal that pure ZnO and doped ZnO nanocrystals have a blue band emission at 440 nm and a green band emission at 520 nm and 530 nm, respectively. Compared with the pure ZnO nanocrystal, the Al doping improves the luminescent properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1406-1411

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.B. Murray, D.J. Norris, M.G. Bawendi: J Am Chem Soc Vol. 115 (1993), p.8706–8715

Google Scholar

[2] G.A. Ozin. Nanochemistry: Adv Mater Vol. 4 (1992), pp.612-649

Google Scholar

[3] G. Markovich, C.P. Collier, S.E. Henrichs: Acc Chem Res Vol. 32 (1999), p.415–423

Google Scholar

[4] C.L. Wu, X.L. Qiao, J.G. Chen: Mater Chem Phys Vol. 102 (2007), pp.7-12

Google Scholar

[5] M. Guo, P. DIAO, S. CAI: J Solid State Chem Vol. 178 (2005), p.1864–1873

Google Scholar

[6] X.H. Sun, S. Lam, T.K. Sham: J Phys Chem B Vol. 109 (2005), p.3120–3125

Google Scholar

[7] M. Kaur, N. Jain, K.K Sharma, S. Bhattacharya, M. Roy, A. K. Tyagi, S.K. Gupta, J.V. Yakhmi: Sensors and Actuators B Vol. 133 (2008), p.456–461

DOI: 10.1016/j.snb.2008.03.003

Google Scholar

[8] A. Datta, S.K. Panda, D.Y. Ganguli: Crystal Growth & Design Vol. 7 (2007), pp.163-169

Google Scholar

[9] C.Q. Wang, D.R. Chen, X.L. Jiao, C.L. Chen: Journal of Physical Chemistry C Vol. 111 (2007) pp.13398-13403

Google Scholar

[10] J. Joo S.G. Kwon, J.H. Yu: Adv Mater Vol. 17 (2005), pp.1873-1877

Google Scholar

[11] B.M Wen, Y.Z. Huang, J.J. Boland: J Phys Chem C Vol. 112 (2008), pp.106-111

Google Scholar

[12] R.B. Peterson, C.L. Fields, B.A. Gregg: Langmuir Vol. 20 (2004), p.5114–5118

Google Scholar

[13] Z.X. Fu, C.X. Guo, B.X. Lin: China. Phys. Lett. Vol. 15 (1998), pp.457-459

Google Scholar

[14] Y.M. Sun: FP-LMTO study for electron-structure of ZnO and its defects (PhD. Thesis. Hefei University of Scienceand Technology, China 2000)

Google Scholar

[15] B.X. Lin, Z.X. Fu, Y.B. Jia: App l. Phys. Lett. Vol. 79 (2001), pp.943-945

Google Scholar

[16] C.W. Fang, J.M. Wu, L.T. Lee, Y.H. Hsien: Thin Solid Films Vol. 517 (2008), pp.1268-1273

Google Scholar