Synthesis, Characterization and Properties of Polyesteramides Based on ε-Caprolactone and 6-Aminocaproic Acid

Article Preview

Abstract:

Biodegradable aliphatic polyesteramides were synthesized from ε-caprolactone and 6-aminocaproic acid by melt-polycondensation method. FTIR, 1H-NMR, DSC, WAXD, TG, and tensile testing were used to characterize the polyesteramides. With the increase in 6-aminocaproic acid content, the melting temperature, thermal degradation temperature and tensile strength at break increased accordingly. The ester bond decomposes at lower temperature, and then the amide bond decomposes at higher temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1538-1547

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S .Andini, L .Ferrara, G. Maglio, R. Palumbo. Macromol. Rapid Commun. 1988, 9: 117–132.

Google Scholar

[2] TH Barrows. Polymers in medicine II. New York: Plenum; 1986.

Google Scholar

[3] L Asìn, E Armelin, J Montané, A Rodrìguez-Galán, J Puiggalì. J Polym Sci, Part A: chem 2001;(39):4283-93.

Google Scholar

[4] SJ Huang and SH Kim. Polym Int 1998; (46) :172–176.

Google Scholar

[5] J Tuominen and JV Seppala. Macromolecules 2000,33: 3530–3535.

Google Scholar

[6] I Goodman and RN Vachon. Eur. Polym. J 1984; 20 (6): 529–537.

Google Scholar

[7] Z Gomurashvili, R Katsarava. J.Mater.Sci. Pure Appl,Chem. 2000:A37(3):215-27

Google Scholar

[8] GoodmanI,VachonRN. EuropeanPolymerJournal,1984,20:539~547.

Google Scholar

[9] Z.Y. Qian, S. Li, Y. He, C. Li and X.B. Liu. Polym. Degrad. Stab. 2003, 81(2): 279–286

Google Scholar

[10] A. Rodriquez-Galan, M. Vera, K. Jiménez,L.Franco,J.Puiggalí. Macromol. Chem.Phys. 2003,204;2078-89.

Google Scholar

[11] H.R. Stapert, P.J. Dijkstra, J.Feijen. Macromol. Symp. 2000,152:127-37

Google Scholar

[12] P.A.M. Lips, R.Broos, M.J.M.van Heeringen, P.J. Dijkstra, J.Feijen. Polymer, 2005, 46: 7823-7833

DOI: 10.1016/j.polymer.2005.07.013

Google Scholar

[13] Y. He, Z.Y. Qian, H.L. Zhang, X.B. Liu. Colloid and Polymer Science,2004,282:972-978

Google Scholar

[14] Z.Y. Qian, S. Li, Y. He, H.L. Zhang and X.B. Liu. Biomaterials ,2004,25:1975–1981.

Google Scholar

[15] Z.Y. Qian, S. Li, H.L. Zhang and X.B. Liu, Synthesi. Colloid Polym. Sci. 2003,281(9):869–875.

Google Scholar

[16] X.B. Liu, Y.He, D.J. Yang, F.H. Zhu, Chinese patent CN 9911451.3;1999.

Google Scholar

[17] X.B. Liu, D.J. Yang, Y.He, F.H. Zhu, L.Mou, Z.K.He, Chinese patent CN 00112700.4;2000.

Google Scholar

[18] X.B. Liu, L.Mou, D.J. Yang, F.H. Zhu, Y.He, Z.K.He, Chinese patent CN 00112699.7;2000.

Google Scholar

[19] H.L. Zhang, Y.He, S.Li, X.B. Liu. Polym. Degrad. Stab.2005,88(2):309-316.

Google Scholar

[20] S. Nojima, M.Toei, S.Hara,S. Tanimoto, S.Sasaki. Polymer,2002,43:4087-90.

Google Scholar

[21] B. Wunderlich. Macronol. Phys. 1980,3:71.

Google Scholar

[22] M.S. Nicolic, J.Djonlagic. Polym. Degrad. Stab. 2001,74:263

Google Scholar

[23] C.Lefevre,D. Villers, M.H.J. Koch, C. David. Polymer, 2001,42:8769-77.

Google Scholar

[24] S.H. Rhee, J.Y. Choi, H.M. Kim. Biomaterials, 2002,23:4915-21

Google Scholar

[25] I.Campoy, M.A. Gomez, Polymer, 1998, 39(25): 6279

Google Scholar