Theoretical Investigation on the Structure and Optical Properties of Alq3 and its Difluorinated Derivatives

Article Preview

Abstract:

The structures of tris(8-hydroxyquinoline) aluminum (Alq3) and its difluorinated derivatives were optimized for the ground state at the B3LYP/6-31G* level and for the excited-state at the CIS/6-31G* level. At the same time, the absorption and emission spectra based on the above structures were calculated by the time-dependent density functional theory (TD-DFT) using the PBE0 method with the 6-31G* set. A significant red shift was predicted for 3,5-difluoro-substituted Alq3 while a significant blue shift for 4,6-difluoro-substituted Alq3. In addition, the reorganization energies for electron carriers (λe) were predicted and it was found that the derivatives are potential materials for electron transport.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1526-1531

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Sun, N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson, S.R. Forrest, Nature 440 (2006) 908.

Google Scholar

[2] E.L. Williams, K. Haavisto, J. Li, G.E. Jabbour, Adv. Mater. 19 (2007) 197.

Google Scholar

[3] J.H. Choi, K.H. Kim, S.J. Choi, H.H. Lee, Nanotechnology 17 (2006) 2246.

Google Scholar

[4] C.W. Tang, S.A. VanSlyke, C.H. Chen, J. Appl. Phys. 65 (1989) 3610.

Google Scholar

[5] W. Wang, S Dong, S. W. Yin, J. Yang, J. Lu, J. Mol. Struct. (THEOCHEM) 867 (2008) 116.

Google Scholar

[6] M. Sugimoto, S. Sakaki, K. Sakanoue, M.D. Newton, J. Appl. Phys. 90 (2001) 6092.

Google Scholar

[7] A. Irfan, R. Cui, J. Zhang, J. Mol. Struct. (THEOCHEM) 850 (2008) 79.

Google Scholar

[8] T.A. Hopkins, K. Meerholz, S. Shaheen, M.L. Anderson, A. Schmidt, B. Kippelen, A.B. Padias, H. K. Hall, Jr., N. Peyghambarian, and N.R. Armstrong, Chem. Mater. 8 (1996) 344.

DOI: 10.1021/cm9503442

Google Scholar

[9] J. Yu, Z. Chen, Y. Sakuratani, H. Suzuki, M. Tokita, S. Miyata, Jpn. J. Appl. Phys. 38 (1999) 6762.

Google Scholar

[10] L.S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G.T. Schmett, J. Marshall, D. Fogarty, P.E. Burrows, S.R. Forrest, J. Am. Chem. Soc. 123 (2001) 6300.

DOI: 10.1021/ja010120m

Google Scholar

[11] S. Anderson, M.S. Weaver, A.J. Hudson, Synth. Met. 111 (2000) 459.

Google Scholar

[12] Y.W. Shi, M.M. Shi, J.C. Huang, H.Z. Chen, M. Wang, X.D. Liu, Y.G. Ma, H. Xu, B. Yang, Chem. Commun. 18 (2006) 1941.

Google Scholar

[13] S.H. Dong, W.L. Wang, S.W. Yin, C.Y. Li, J. Lu, Synth. Met. 159 (2009) 385.

Google Scholar

[14] P. Addy, D.F. Evans, R.N. Sheppard, Inorg. Chim. Acta 127 (1987) L19.

Google Scholar

[15] G.P. Kushto, Y. Iizumi, J. Kido, Z.H. Kafafi, J. Phys. Chem. A 104 (2000) 3670.

Google Scholar

[16] A. Curioni, M. Boero, W. Andreoni, Chem. Phys. Lett. 294 (1998) 263.

Google Scholar

[17] C.K. Tai, Y.M. Chou, B.C. Wang, J. Lumin. 131 (2010) 169.

Google Scholar

[18] G. Gahungu, J. Zhang, V. Ntakarutimana, N. Gauhungu, J. Phys. Chem. A, 114 (2010) 652.

Google Scholar

[19] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

Google Scholar

[20] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.

Google Scholar

[21] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623.

Google Scholar

[22] P.C. Hariharan, J.A. Pople, Mol. Phys. 27 (1974) 209.

Google Scholar

[23] M.S. Gordon, Chem. Phys. Lett. 76 (1980) 163

Google Scholar

[24] M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80 (1984) 3265.

Google Scholar

[25] J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. 96 (1992) 135.

Google Scholar

[26] J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102 (1980) 939.

Google Scholar

[27] Y.K. Han, S.U. Lee, Chem. Phys. Lett. 366 (2002) 9.

Google Scholar

[28] M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108 (1998) 4439.

Google Scholar

[29] C. Adamo, V. Barone, J. Chem. Phys. 110 (1999) 6158.

Google Scholar

[30] A. Irfan, R.H. Cui, J.P. Zhang, Theor. Chem. Acc. 122 (2009) 275.

Google Scholar

[31] M.J. Frisch et al., GAUSSIAN 03 Revision B.03, Gaussian, Inc., Pittsburgh, PA, 2003.

Google Scholar

[32] M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. 122 (2000) 5147.

Google Scholar

[33] R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 81 (1985) 265.

Google Scholar

[34] S.F. Nelsen, D.A. Trieber, R.F. Ismagilov, Y. Teki, J. Am. Chem. Soc. 123 (2001) 5684.

Google Scholar

[35] S.F. Nelsen, F. Blomgren, J. Org. Chem. 66 (2001) 6551.

Google Scholar