Photochemical Degradation of Azo Dyes in the Presence of Hydrogen Peroxide and Hematite under Visible Light Irradiation: Surface Complex Forming and Reaction Mechanism

Article Preview

Abstract:

The photochemical degradation mechanisms of an azo dye Direct Red 4BS and Methyl Orange on hematite in the presence of H2O2 were investigated. The decolorization of azo dyes was attributed to the forming surface complex between specific bond of the dyes and hematite, which facilitate the electron transfer from hematite to azo bond. No mineralization of azo dyes occurred in the presence of visible irradiation, only chromogenic group destroyed in the photo-chemical reaction process. Surface complex between azo dyes and hematite will be destroyed under alkaline solution which suggested the active site or the formed surface complex had been destroyed by OH. Chemical adsorption of the azo dyes on hematite was critical factor which affect the decolorization efficiency of the photoreaction.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1612-1619

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Liou, M. C. Lu, J. N. Chen. Oxidation of explosives by Fenton and photo-Fenton processes. Water Res., 37 (2003) 3172-3179

DOI: 10.1016/s0043-1354(03)00158-1

Google Scholar

[2] R. Maciel, G.L. Sant'Anna Jr., M. Dezotti. Phenol removal from high salinity e.uents using Fenton's reagent and photo-Fenton reactions. Chemosphere, 57 (2004) 711-719

DOI: 10.1016/j.chemosphere.2004.07.032

Google Scholar

[3] W. Gernjak, M. Fuerhacker, P. Fernandez-Ibanez, J. Blanco, S. Malato. Solar photo-Fenton treatment-Process parameters and process control. Appl. Catal. B: Environ., 64 (2006) 121-130

DOI: 10.1016/j.apcatb.2005.12.002

Google Scholar

[4] R. Andreozzi, V. Caprio, R. Marotta. Oxidation of 3,4-dihydroxybenzoic acid by means of hydrogen peroxide in aqueous goethite slurry. Water Res., 36 (2002) 2761-2768

DOI: 10.1016/s0043-1354(01)00499-7

Google Scholar

[5] F. Martinez, G. Calleja, J.A. Melero, R. Molina. Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl. Catal. B: Environ., 60 (2005) 181-190

DOI: 10.1016/j.apcatb.2005.03.004

Google Scholar

[6] Y. M. Li, Y. Q. Lu, X. L. Zhu. Photo-Fenton discoloration of the azo dye X-3B over pillared bentonites containing iron. J. Hazard. Mater., 132 (2006) 196-201

DOI: 10.1016/j.jhazmat.2005.07.090

Google Scholar

[7] J. X. Chen, L. Z. Zhu. Catalytic degradation of Orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water. Chemosphere, 65 (2006) 1249-1255

DOI: 10.1016/j.chemosphere.2006.04.016

Google Scholar

[8] D. Li, T. Yuranova, P. Albers, J. Kiwi, Accelerated photobleaching of Orange II on novel (H5FeW12O4010H2O)/silica structured fabrics, Water Res., 38 (2004) 3541-3550.

DOI: 10.1016/j.watres.2004.05.005

Google Scholar

[9] F. Martinez, G. Calleja, J. A. Melero, R. Molina. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Appl. Catal. B: Environ.,70 (2007) 452-460

DOI: 10.1016/j.apcatb.2005.10.034

Google Scholar

[10] J. Y. Feng, X. J. Hu, P. L. Yue. Novel Bentonite Clay-Based Fe-Nanocomposite as a Heterogeneous Catalyst for Photo-Fenton Discoloration and Mineralization of Orange II. Environ. Sci. Technol., 38, (2004) 269-275

DOI: 10.1021/es034515c

Google Scholar

[11] M. C. Lu, J. N. Chen, Hsu-Hui Huang. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere, 46 (2002) 131-136

DOI: 10.1016/s0045-6535(01)00076-5

Google Scholar

[12] J. He, W. H. Ma, W. J. Song, J. C. Zhao, X. H. Qian, S. B. Zhang, J. C. Yu. Photoreaction of aromatic compounds at a a-FeOOH/H2O interface in the presence of H2O2: evidence for organic-goethite surface complex formation. Water Res., 39 (2005)119- 128.

DOI: 10.1016/j.watres.2004.09.006

Google Scholar

[13] J. He, W. H. Ma, J. J. He, J. C. Zhao, J. C. Yu. Photooxidation of azo dye in aqueous dispersions of H2O2/a-FeOOH. Appl. Catal. B: Environ., 39 (2002) 211-220

DOI: 10.1016/s0926-3373(02)00085-1

Google Scholar

[14] Y. Xue, S. J. Traina. Oxidation kinetics of Co (II)-EDTA in aqueous and semi- aqueous goethite suspensions. Environ. Sci. Technol., 30 (1996) 1975-1981

DOI: 10.1021/es950715f

Google Scholar

[15] C. Hu, Y. C. Tang, J. C. Yu, P. K. Wong. Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst. Appl. Catal. B: Environ., 40 (2003) 131-140

DOI: 10.1016/s0926-3373(02)00147-9

Google Scholar

[16] C. Kormann, D. W. Bahnemann, M. R. Hoffmann. Environmental photochemistry: Is iron oxide (hematite) an active photocatalyst? A comparative study: a-Fe2O3, ZnO, TiO2. J. Photochem. Photobio. A: Chem., 48 (1989) 161-169

DOI: 10.1016/1010-6030(89)87099-6

Google Scholar

[17] S. S. Lin, M. D. Gurol. Catalytic decomposition of hydrogen peroxideon iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol., 32 (1998) 1417-1423

DOI: 10.1021/es970648k

Google Scholar

[18] E. C. Yost, M. I. Tejedor-Tejedor, M. A. Anderson. In situ CIR-FTIR characterization of salicylate complexes at the goethite/aqueous solution interface. Environ. Sci. Technol. 24 (1990) 822-828

DOI: 10.1021/es00076a005

Google Scholar

[19] R. Andreozzi, A. D'Apuzzo, R. Marotta. Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide. Water Res., 36 (2002) 4691- 4698

DOI: 10.1016/s0043-1354(02)00204-x

Google Scholar

[20] J. Bandara, J. A. Mielczarski, A. Lopez, J. Kiwi. Sensitized degradation of chlorophenols on iron oxides induced by visible light: Comparison with titanium oxide. Appl. Catal. B: Environ., 34 (2001) 321-333

DOI: 10.1016/s0926-3373(01)00225-9

Google Scholar