Study on a Self-Diverting Acid System for Well Stimulation Based on Novel Visco-Elastic Surfactant

Abstract:

Article Preview

Carbonate reservoir, widely distributed in china, is an important resource of oil and gas. Most of carbonate reservoir are very tight and need to be stimulated to increase the permeability for the flowing of oil/gas. Acid treatment is a kind of stimulation. However, the ordinary acid system cannot stimulate carbonate reservoir effectively because of the heterogeneity among formations. Based on a novel visco-elastic surfactant, this paper develops a self-diverting acid system (DCA) for carbonate formations. This system had been applied in the treatment of carbonate reservoirs successfully. Experiments studying the diverting mechanism had been conducted with HTHP Rheometer, parallel core flooding system and MRI Scanning system. The results indicate that: the viscosity of reacted acid can reach to 200 times higher than that of fresh acid. The injecting pressure of DCA is 20 times higher than that of ordinary acid (HCl) during the parallel core flooding experiment. MRI scanning images of the cores after acid flooding show that DCA can stimulate the cores with middle and low permeability more effectively. In middle and low permeability cores, the length of wormhole created by DCA is 4-8 times longer than that created by ordinary acid. At the same time, the relationship between flooding pressure and core permeability is also studied. This paper reveals the diverting mechanism of DCA through these experiments.

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Edited by:

Jinglong Bu, Pengcheng Wang, Liqun Ai, Xiaoming Sang, Yungang Li

Pages:

3120-3126

DOI:

10.4028/www.scientific.net/AMR.287-290.3120

Citation:

F. J. Zhou et al., "Study on a Self-Diverting Acid System for Well Stimulation Based on Novel Visco-Elastic Surfactant", Advanced Materials Research, Vols. 287-290, pp. 3120-3126, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.