First-Principles Study of the Electron Transport Behavior of Short Graphene Nanoribbon

Article Preview

Abstract:

The electron transport behavior of a short graphene nanoribbon sandwiched between two gold(111) electrodes is investigated using density functional theory calculations and nonequilibrium Green’s function technique. The calculated current-voltage characteristic of the graphene nanoribbon junction shows an obvious negative differential resistance (NDR) phenomenon. The mechanism of this NDR behavior of graphene nanoribbon is discussed in terms of the evolution of the molecular energy levels, the spatial distribution of frontier molecular orbitals, and the electron transmission spectra under various applied biases. It is found that the changes of the spatial distribution of molecular orbitals near Fermi level with the applied bias lead to such NDR behavior.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

313-316

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Joachim, J.K. Gimzewski and A. Aviram: Nature Vol. 408 (2000), p.541

Google Scholar

[2] J.M. Seminario: Nat. Mater. Vol. 4 (2005), p.111

Google Scholar

[3] Y.W. Li, J.H. Yao, X.S. Deng and X.X. Huang: Mater. Sci. Forum Vol. 663-665 (2011), p.616

Google Scholar

[4] Y.W. Li, J.H. Yao, C.J. Liu, J.W. Yang and C.L. Yang: Phys. Lett. A Vol. 373 (2009), p.3974

Google Scholar

[5] Y.W. Li, G.P. Yin, J.H. Yao and J.W. Zhao: Comp. Mater. Sci. Vol. 42 (2008), p.638

Google Scholar

[6] K.P. Loh, Q. Bao, P.K. Ang and J. Yang: J. Mater. Chem. Vol. 20 (2010), p.2277

Google Scholar

[7] B. Huang, Q. Yan, G. Zhou, J. Wu, B.-L. Gu, W. Duan and F. Liu: Appl. Phys. Lett. Vol. 91 (2007), p.253122

Google Scholar

[8] Z.F. Wang, Q. Li, Q.W. Shi, X. Wang, J.G. Hou, H. Zheng and J. Chen: Appl. Phys. Lett. Vol. 92 (2008), p.133119

Google Scholar

[9] Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

Google Scholar

[10] Y.W. Li, J.W. Zhao, X. Yin, H.M. Liu and G.P. Yin: Phys. Chem. Chem. Phys. Vol. 9 (2007), p.1186.

Google Scholar

[11] J.C. Cuevas, J. Heurich, F. Pauly, W. Wenzel and G. Schon: Nanotechnology Vol. 14 (2003), p. R29.

Google Scholar

[12] S. Sen and S. Chakrabarti: J. Phys. Chem. C. Vol. 112 (2008), p.15537.

Google Scholar

[13] J. Taylor, H. Guo and J. Wang: Phys. Rev. B Vol. 63 (2001), p.245407.

Google Scholar

[14] S. Datta: Electronic Transport in Mesoscopic Systems, (Cambridge University Press, New York 1995)

Google Scholar