Modulation of Band Gaps of Codoping GaN: A First Principles Study

Article Preview

Abstract:

To improve the solar energy conversion of GaN for photocatalytic, the band gap of GaN should be tailored to match with visible light absorption, we calculated that Cr/C codoping effectively narrows the band gap of GaN by using first-principles calculations. Cr/C codoping can split the band gap with the formation of an intermediate band. Positive defect pair binding energy indicates that the defect pairs are stable with respect to the isolate impurity in the sample. The band gap narrowing can be optimized to shift light absorption into the peak of the visible spectral region , which enable maximal utilization of sunlight and thus offer immense potential for applications in solar energy conversion.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

306-312

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Strite, H. Morkoç: J. Vac. Sci. Technol. B 10 (1992), p.1237.

Google Scholar

[2] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns: J.Appl. Phys. 76 (1994), p.1363.

Google Scholar

[3] R.F. Davis: Processing of the IEEE, 79 (1991), p.702.

Google Scholar

[4] Y.J. Dong, B.Z. Tian, T.J. Kempa, and C.M. Lieber: Nano Lett, 9 (2009), p.2183.

Google Scholar

[5] C.J. Neufeld, N.G. Toledo, and U.K. Mishra: Appl. Phys. Lett. 93 (2008), p.143502.

Google Scholar

[6] O.Jani, I.Ferguson, C.Honsberg, and S.Kuryz: Appl. Phys. Lett. 91 (2007), p.132117.

Google Scholar

[7] T. Kida, Y. Minami, G. Guan, M. Nagand, M. Akiyama, and A. Yoshida: J. Mater. Sci. 41 (2006), p.3527.

Google Scholar

[8] H. Jung, Y. J. Hong, Y. Li, J. Cho, J. Y. Kim, and G. C. Yi: ACS Nano 2 (2008), p.637.

Google Scholar

[9] A.Zunger: Appl. Phys. Lett. 83 (2003), p.57.

Google Scholar

[10] Y.Q. Gai, J,B.Li, S.S.LI, J.B. Xia and S.H. Wei: Phys. Rev. Lett. 102, (2009), p.036402.

Google Scholar

[11] W.G. Zhu, X.F. Qiu, and V.Inacu: Phys. Rev. Lett. 103 (2009), p.226401.

Google Scholar

[12] Y.Q. Gai, J.B.Li, and J.B. Xia: Phys.Rev.B, 80 (2009), p.153201.

Google Scholar

[13] Z.G. Wang, J.B.Li, F.Gao, and W.J. Weber: Appl. Phys. Lett. 96 (2010), p.103112.

Google Scholar

[14] J.C.Li, J.Y. Kang: Phys. Rev. B, 71 (2005), p.035216.

Google Scholar

[15] P. E. Blochl: Phys. Rev. B 50 (1994), p.17955.

Google Scholar

[16] P. Hohenberg, W. Kohn: Phys. Rev. B 136 (1964), p.864.

Google Scholar

[17] J. P. Perdew, Y. Wang: Phys. Rev. B 33 (1986), p.8800.

Google Scholar

[18] G. Kresse, J. Furthmuller: Comput. Mater. Sci. 6 (1996), p.15.

Google Scholar

[19] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P.Sutton: Phys. Rev. B 57 (1998), p.1505.

Google Scholar

[20] L. L. Jensen, J. T. Muckerman and M. D. Newton: J. Phys. Chem. C 112 (2008), p.3439.

Google Scholar

[21] H. J. Monkhorst, J. D. Pack: Phys. Rev. B 13 (1976), p.5188.

Google Scholar

[22] K.Kubota, Y.Kobayashi and K.Fujimoto: J. Appl. Phys. 66 (1989), p.2984.

Google Scholar

[23] H.Pan, B.H.Gu and G.Eres: J.Chem.Phys. 132 (2010), p.104501.

Google Scholar

[24] J. Li, S.H. Wei, S. S. Li and J. B. Xia: Phys. Rev. B 74 (2006), p.081201.

Google Scholar