A Shakedown Limit under Hertz Contact Pressure

Article Preview

Abstract:

In his "Contact Mechanics" book, Professor K. L. Johnson described an analytical lower bound shakedown approach to predict the shakedown load limit under repeated Hertz moving surface loads. Based on Bleich-Melan shakedown theorem, this problem will be revisited in this paper using finite element techniques and mathematical programming.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Pages:

1506-1510

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Collins, I. F. and Cliffe, P. F. (1987) "Shakedown in frictional materials under moving surface loads," International Journal for Numerical and AnalyticalMethods inGeomechanics, 11, 409--420.

DOI: 10.1002/nag.1610110408

Google Scholar

[2] Johnson, K. L. (1962) "A shakedown limit in rolling contact", in Proc. 4th Natl. Conf. on Apllied Mechanics, Berkeley, CA, 971--975.

Google Scholar

[3] Johnson, K. L. (1985) Contact Mechanics, Cambridge University Press.

Google Scholar

[4] Johnson, K. L. (1992) "The application of shakedown principles in rolling and sliding contact", Eur. J. Mech., A/Solids, 11, 155-172.

Google Scholar

[5] Ponter, A. R. S., Hearle, A. D. and Johnson, K. L. (1985) "Application of the kinematical shakedown theoremto rolling and sliding point contacts", Journal of theMechanics and Physics of Solids, 33(4), 339--362.

DOI: 10.1016/0022-5096(85)90033-x

Google Scholar

[6] Shiau, J. S. andYu, H. S. (2000) 'Load and displacement prediction for shakedown analysis of layered pavements', Transportation Research Board, No 1730, 117-124.

DOI: 10.3141/1730-14

Google Scholar

[7] Shiau, J. S. (2001) Numerical Methods for Shakedown Analysis of Pavements under Moving Surface Loads, Ph.D. Thesis, The University of Newcastle, NSW, Australia.

Google Scholar

[8] Sloan, S. W. (1988) "Lower bound limit analysis using finite elements and linear programming", International Journal for Numerical and Analytical Methods in Geomechanics, 12, 61-67.

DOI: 10.1002/nag.1610120105

Google Scholar