Optimization of Extraction Conditions of Active Constituents from Siraitia Grosvenorii

Article Preview

Abstract:

The conditions of cascade extraction and isolation of some active constituents from Siraitia grosvenorii were optimized. The active constituents were extracted by ultrasonic extraction and isolated by chromatography; the obtained active constituents were determined by HPLC and/or spectrophotometry etc. The yields of the active constituents were as follows, mogroside 3.97% (purity 91.84%), polyphenol 3.45%, free polysaccharide 12.53%, free oligosaccharide 11.96%, combined polysaccharide 2.29%, combined oligosaccharide 2.88%, amino acids 6.54% and alkaloid 7.06%. This extraction process could be used as a guideline for the multi-utilization of Siraitia grosvenorii.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Pages:

2523-2528

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.P. Li, T. Ikeda, T. Nohara, J.L. Liu, Y.X. Wen, T. Sakamoto, and G. Nonaka: Chem. Pharm. Bull. Vol. 55 (2007), p.1082

Google Scholar

[2] T. Akihisa, Y. Hayakawa, H. Tokuda, N. Banno, N. Shimizu, T. Suzuki, and Y. Kimura: J. Nat. Prod. Vol. 70 (2007), p.783

Google Scholar

[3] M.H. Pan, J.R. Yang, M.L. Tsai, S. Sang, and C.T. Ho: Journal of Functional Foods Vol. 1 (2009), p.145

Google Scholar

[4] Y.A. Suzuki, Y. Murata, H. Inui, M. Sugiura, and Y. Nakano: J. Agric. Food. Chem. Vol. 53 (2005), p.2941

Google Scholar

[5] X.Y. Qi, W.J. Chen, L.Q. Zhang, and B.J. Xie: Nutr. Res. Vol. 28 (2008), p.278

Google Scholar

[6] S.Q. Jiang: China Food Additives Vol. (1999), p.12 (In Chinese)

Google Scholar

[7] Y. Xia, M.E. Rivero-Huguet, B.H. Hughes, and W.D. Marshall: Food. Chem. Vol. 107 (2008), p.1022

Google Scholar

[8] R. Kasai, R.L. Nie, K. Nashi, K. Ohtani, J. Zhou, G.D. Tag, and O. Tanaka: Agric. Bio. Chem. Vol. 53 (1989), p.3347

Google Scholar

[9] D.P. Li, M. El-Aasr, T. Ikeda, M. Ogata, H. Miyashita, H. Yoshimitsu, and T. Nohara: Chem. Pharm. Bull. Vol. 57 (2009), p.870

DOI: 10.1248/cpb.57.870

Google Scholar

[10] P.A. Marone, J.F. Borzelleca, D. Merkel, J.T. Heimbach, and E. Kennepohl: Food. Chem. Toxicol. Vol. 46 (2008), p.910

Google Scholar

[11] D. Li, M. El-Aasr, T. Ikeda, M. Ogata, H. Miyashita, H. Yoshimitsu, and T. Nohara: Chem. Pharm. Bull. Vol. 57 (2009), p.870

DOI: 10.1248/cpb.57.870

Google Scholar

[12] Z.H. Jia and X.G. Yang: Nat. Prod. Commun. Vol. 4 (2009), p.769

Google Scholar

[13] S.Q. Tang, Y. Li, Y. Geng, G.R. Zhang, L. Wang, and Y. Zhong: Biochem. Syst. Ecol. Vol. 35 (2007), p.557

Google Scholar

[14] S.Q. Tang, X.Y. Bin, Y.T. Peng, J.Y. Zhou, L. Wang, and Y. Zhong: Genet. Resour. Crop. Ev. Vol. 54 (2007), p.1053

Google Scholar

[15] G.P. Lin, T. Jiang, X.B. Hu, X.H. Qiao, and Q.H. Tuo: Exp. Diabetes. Res. Vol. 2007 (2007), p.1

Google Scholar

[16] G. Taguchi: Introduction to quality engineering: designing quality into products and processes (Asian Productivity Organization Tokyo, Tokyo 1986).

Google Scholar

[17] J. Liu, Y.H. Rong, Z.B. Wang, and L. Rong: Journal of Chinese Medicinal Materials Vol. 33 (2010), p.629 (In Chinese)

Google Scholar

[18] N. Turkmen, F. Sari, and Y.S. Velioglu: Food. Chem. Vol. 99 (2006), p.835

Google Scholar

[19] L.H. Koehler: Anal. Chem. Vol. 24 (1952), p.1576

Google Scholar

[20] J. Pontoh and N.H. Low: Food. Res. Int. Vol. 28 (1995), p.379

Google Scholar

[21] W. Troll and R. Cannan: J. Biol. Chem. Vol. 200 (1953), p.803

Google Scholar

[22] M. Furr and P.G. Mahlberg: J. Nat. Prod. Vol. 44 (1981), p.153

Google Scholar