Fabrication of Hierarchical Microporous Structures with Controlled Morphology and Topography

Article Preview

Abstract:

Co-continuous polymer blend has attracted broad interest in many technique fields due to its unique ability to be transferred into porous material with interconnected micro-channels. And combined with some surface patterning, it can provide material of hierarchical porous structure. A key challenge in the fabrication of material of desired morphology is the ability to control the interface movement. Here, we incorporate the thermo-geometrically controlled annealing and hot embossing to fabricate hierarchical microporous structures with well defined morphology and topography. Various novel structures demanded for many emerging applications can be created by judiciously using this newly developed technique.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Pages:

573-578

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Z. Wu, H.B. Xu and T. Zhou: Polymer Vol. 51 (2010), p.3560

Google Scholar

[2] W. Yu, W. Zhou and C.X. Zhou: Polymer Vol. 51 (2010), p. (2091)

Google Scholar

[3] N. Virgilio, P. Sarazin and B.D. Favis: Biomaterials Vol. 31 (2010), p.5719

Google Scholar

[4] J.M. Li, P.L. Ma and B.D. Favis: Macromolecules Vol. 35 (2002), p. (2005)

Google Scholar

[5] Z.H. Yuan and B.D. Favis: J. Polym. Sci. Part B: Polym Phys Vol. 44 (2006), p.711

Google Scholar

[6] C.R. Lopez-Barron and C.W. Macosko: Langmuir Vol. 25 (2009), p.9392

Google Scholar

[7] A. Pyun, J.R. Bell and K.H. Won: Macromolecules Vol. 40 (2007), p. (2029)

Google Scholar

[8] Z.Y. Xiang, P. Sarazin and B.D. Favis: Biomacromolecules Vol. 10 (2009), p. (2053)

Google Scholar

[9] D.G. Yao, W. Zhang and J.G. Zhou: Biomacromolecules Vol. 10 (2009), p.1282

Google Scholar

[10] W. Zhang, S. Deodhar and D.G. Yao: Annals of Biomedical Engineering Vol. 38 (2010), p. (1954)

Google Scholar

[11] W. Zhang, D.G. Yao and Q.W. Zhang: Biofabrication Vol. 2 (2010), p.035006

Google Scholar

[12] Y. Cao, F.P. Yin and J. Feng: Biomaterials Vol. 31 (2010), p.6228

Google Scholar

[13] B.J. Papenburg, S. Schuller-Ravoo and L.A.M. Bolhuis-Versteeg: Acta Biometerialia Vol. 5 (2009), p.3281

Google Scholar

[14] M.T. Lam, W.C. Clem and S.C. Takayama: Biomaterials Vol. 29 (2008), p.1705

Google Scholar

[15] B.C. Isenberg, Y. Tsuda and C. Williams: Biomaterials Vol. 29 (2008), p.2565

Google Scholar

[16] D.Yucel, G.T. Kose and V. Hasirci: Biomaterials Vol. 31 (2010), p.1596

Google Scholar

[17] C.C. Berry, G. Campbell and A. Spadiccino: Biomaterials Vol. 25 (2004), p.5781

Google Scholar

[18] S. Sarkar, G.Y. Lee and J.Y. Wong: Biomaterials Vol. 27 (2006), p.4775

Google Scholar

[19] Y. Zhang, J. Lu and S. Shimano: Electrochemistry Communications Vol. 9 (2007), p.1365

Google Scholar

[20] A. Lozano, F. Barreras and L. Valino: Exp. Fluids Vol. 42 (2007), p.301

Google Scholar

[21] Y. Zhang, J. Lu and H.S. Zhou: J. Miroelectromech. Syst. Vol. 17 (2008), p.1020

Google Scholar

[22] M. Ishizuka, H. Houjou and S. Motokawa: Jpn. J. Appl. Phys Vol. 45 (2006), p.7944

Google Scholar

[23] A.D. Taylor, B.D. Lucas and L.J. Guo: J. Power Sources Vol. 171 (2007), p.218

Google Scholar

[24] H.T. Kim, T.V. Reshentenko and H.J. Kweon: J. Electrochem. Soc. Vol. 154 (2007), p. B1034

Google Scholar

[25] H.S. Jang, M.W. Cho and D.S. Park: Sensors Vol. 8 (2008), p.700

Google Scholar

[26] Y.A. Song, C. Batista and R. Sarpeshkar: J. Power Sources Vol. 183 (2008), p.674

Google Scholar

[27] H. Mekaru, E. Fukushima and Y. Hiyama: J. Vac. Sci. Technol. Vol. 27 (2009), p.2814

Google Scholar

[28] H.W. Choi, S. Bong and D.F. Farson: J. Laser Appl. Vol. 21 (2009), p.196

Google Scholar