Air-Water Interfacial Film of Zirconia and its Heat-Treatment

Article Preview

Abstract:

The air-water interfacial zirconia film composed of nanodisks with self-assembly structure is prepared. Scanning electron microscopy (SEM), Energy Dispersive Spectrum (EDS), X-ray diffraction (XRD) and Transmission electron microscopy (TEM) are used to characterize the film. Furthermore, the heat-treatment of this film is studied by thermogravimetry and differential thermal analysis (TG-DTA), XRD, and Raman spectroscopy (Raman). The results suggest that the zirconia of the samples changes from amorphous phase to t-ZrO2 phase then m-ZrO2 phase with the rise of calcined temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1095-1098

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.P.S. Badwal, Appl. Phys. A 50 (1990) 449.

Google Scholar

[2] R.C. Garvie, R.H. Hannink, R.T. Pascoe, Nature 258 (1975) 703.

Google Scholar

[3] J.F. Haw, J. Zhang, K. Shimizu, T.N. Venkatraman, D.P. Luigi, W. Song, D.H. Barich, J.B. Nicholas, J. Am. Chem. Soc. 122 (2000) 12561.

DOI: 10.1021/ja0027721

Google Scholar

[4] C. Leon, M.L. Lucia, Santamaria, J. Phys. Rev. B 55 (1997) 882.

Google Scholar

[5] J. Joo, T. Yu, Y.W. Kim, H.M. Park, F.X.Wu, J.Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 125 (2003) 6553.

Google Scholar

[6] Y.K. Liu, C.L. Zheng, W.Z. Wang, Y.J. Zhan, G.H. Wang, J. Am. Ceram. Soc. 85 (2002) 3120.

Google Scholar

[7] H. Xu, D.H. Qin, Z. Yang, H.L. Li, Mater. Chem. Phys. 80 (2003) 524.

Google Scholar

[8] J.C. Bao, D.P. Xu, Q.F. Zhou, Z. Xu, Y.Y. Feng, Y.M. Zhou, Chem. Mater. 14 (2002) 4709.

Google Scholar

[9] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, Chem. Commun. 26 (1997) 1581.

Google Scholar

[10] V.V. Srdić, M.Winterer, H. Hahn, J. Am. Ceram. Soc. 83 (2000) 729.

Google Scholar

[11] R. Mueller, R. Jossen, E. Pratsinis, M. Watson, K. Akhtar, J. Am. Ceram. Soc. 87 (2004) 197.

Google Scholar

[12] A.U. Limaye, J.J. Helble, J. Am. Ceram. Soc. 86 (2003) 273.

Google Scholar

[13] M.Z.-C. Hu, T. Harris, C.H. Byers, J. Colloid Interface Sci. 198 (1998) 87.

Google Scholar

[14] O. Vasylkiv, Y. Sakka, J. Am. Ceram. Soc. 84 (2001) 2489.

Google Scholar

[15] F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, G.C. Pellacani, J. Am. Ceram. Soc. 84 (2001) 2728.

Google Scholar

[16] M. Picquart, T. López, R. Gómez, E. Torres, A.Moreno, J. Garcia, J. Therm. Anal. Calorim. 76 (2004) 755.

Google Scholar

[17] X.H. Liu, C. Kan, X. Wang, X.J. Yang, L.D. Lu, J. Am. Chem. Soc. 128(2006) 430.

Google Scholar

[18] L. Shi, K. Tin, N. J.Wong, Mater. Sci. 34 (1999) 3367.

Google Scholar