Microwave Assisted Synthesis of ZnO Calthrop-Like Nanostructures in Ionic-Liquid

Article Preview

Abstract:

ZnO Calthrop-like framework have been synthesized via a microwave assisted way by thermal decomposition of precursors in the ionic liquid 1-butyl-3-ethyl imidazolium tetrafluoroborate ([Beim]BF4) aqueous solution. The structure of [Beim]BF4 were analyzed by means of IR and 1HNMR, The as-samples were characterized by XRD, SEM and UV techniques. The results showed that the as-prepared ZnO have wurtzite structure. nanorods have a diameter of 50 nm to100 nm and lengths of about 3 μm , and the ionic liquid [Beim]BF4 can not only act as a reaction medium but also modify ZnO nanorods in the reaction. The growth mechanics of ZnO nano-structure was preliminary studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1397-1401

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Andreas Taubert . Acta Chim. Slov. Vol. 52(2005), p.183–186.

Google Scholar

[2] Welton T. Chem.Rev., Vol. 99(1999), pp.2071-2083.

Google Scholar

[3] Antonietti M, Kuang D B, Smarsly B, et al. Angew.Chem.Lnt.Ed, Vol. 43(2004), pp.4988-4992.

Google Scholar

[4] L Wang, B Zhao, L Chang, et al. Sci China Ser B-Chem, Vol. 50(2007), pp.224-229.

Google Scholar

[5] J Wang, J M Cao, B Q Fang, et al. Matter.Lett., Vol. 59(2005), pp.1405-1408.

Google Scholar

[6] C Y Chen, Q Li, H J Wu, et al. Function Material, Vol. 41(2010), pp.1086-1089.

Google Scholar

[7] J H Ma, H Q Yang, Y Z Song, et al. Science in China Series E: Technological Sciences, Vol. 52(2009), pp.1264-1272.

Google Scholar

[8] Z H Zhang, Z C Tan, et al. Journal of Thermal Analysis and Calorimetry, Vol. 85(2006), p.551–557.

Google Scholar

[9] Q S Chen, J G Zheng, X D Liu, et al., 2ndIEEE Internation Nanaelectrics Conference, 2008, Shanghai China.

Google Scholar

[10] S M Zhou, X H Zhang, X M Meng, et al., Nanotechnology, Vol. 15(2004), pp.1152-1155 .

Google Scholar

[11] J M Cao, J Wang, B Q Fang, et al.,Acta Phys.Chim.Sin., Vol. 21(2005), pp.668-627.

Google Scholar

[12] H G Zhu, J F Huang, Z W Pan, et al., Chem. Mater. Vol. 18(12006), pp.4473-4477.

Google Scholar

[13] W W Wang, Y J Zhu. Inorg. Chem. Commun. Vol. 7(2004), pp.1003-1005.

Google Scholar

[14] J G Zheng, Q S Chen, X D L iu, et al., Bulletin of the Chinese Ceramic Society, Vol. 28(2009), pp.1340-1345

Google Scholar

[15] H X Liu, Q Xu. Chemical Reagent, Vol. 28(2006), pp.581-582.

Google Scholar

[16] Y J Zhu, W W Wang, R J Qi, et al., Angew.Chem.Int.Ed., Vol. 43(2004), pp.1410-1414.

Google Scholar