Electron Transport of Right-Angle Graphene Nanoribbons

Abstract:

Article Preview

By the tight-binding method, we study the transport properties of right-angle L-shaped graphene nanoribbons. We found a universal conclusion is that the resonance of electron tunneling will present at the Dirac point when the system is metallic and the ribbons widths satisfy (NBAB=2NBZB-1). Further research suggests that the conductance resonance effect will be destroyed by impurity scatterer, especially the impurity concentration and strength are nontrivially large. We also found that antiresonance effect will result in a strong conductance suppression when the width difference () of the two ribbons is very big. In addition, when the system is semiconducting, the center of the well-defined insulating band can be easily tuned by a gate bias exerted on the armchair-edged graphene nanoribbon.

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Edited by:

Pengcheng Wang, Liqun Ai, Yungang Li, Xiaoming Sang and Jinglong Bu

Pages:

1451-1455

DOI:

10.4028/www.scientific.net/AMR.295-297.1451

Citation:

H. D. Li and J. Z. Niu, "Electron Transport of Right-Angle Graphene Nanoribbons", Advanced Materials Research, Vols. 295-297, pp. 1451-1455, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.