Ultrafine α-Fe2O3 Nanoparticles: Facile Synthesis, Characterization and their Catalytic Activity on Ammonium Perchlorate

Article Preview

Abstract:

Ultrafine α-Fe2O3 nanoparticles have been synthesized by a facile hydrothermal method. The products were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM). The diameter of the as-obtained α-Fe2O3 nanoparticles is about 6.8 nm on average. The solvent have great effect on the morphology of the final products. Furthermore, the effect of ultrafine α-Fe2O3 nanoparticles on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperature of AP in the presence of α-Fe2O3 nanoparticles was reduced by 99 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

419-422

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie: J. Phys. Chem. B Vol. 110 (2006), p.17806

Google Scholar

[2] Z. Pu, M. Cao, J. Yang, K. Huang, C. Hu: Nanotechnology Vol. 17 (2006), p.799

Google Scholar

[3] W. Huynh, X. G. Peng, A. P. Alivisatos: Adv. Mater. Vol. 11 (1999), p.923

Google Scholar

[4] H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, M. F. Rubner: J. Appl. Phys. Vol. 83 (1998), p.7965

DOI: 10.1063/1.367978

Google Scholar

[5] C. R. Gong, D. R. Chen, X. L. Jiao, Q. L. Wang: J. Mater. Chem. Vol. 12 (2002), p.1844

Google Scholar

[6] R. D. Zysler: Phys. Rev. Vol. 68 (2003), p.212408

Google Scholar

[7] Y. Zhang, X. Liu, D. Chen, L. Yu, J. Nie, S. Yi, H. Li, C. Huang: J. Alloys Compounds Vol. 509 (2011), p. L69

Google Scholar

[8] Y. Zhang, X. Liu, L. Yu, J. Nie, Y. Zhong, C. Huang: J. Solid State Chem. Vol. 184 (2011), p.387

Google Scholar

[9] L. L. Liu, F. S. Li, L. H. Tan, L. Ming, Y. Yi: Propell. Explos. Pyrot. Vol. 29 (2004), p.34.

Google Scholar

[10] T. Liu, L. Wang, P.Yang, B.Hu: Mater. Lett. Vol. 62 (2008), p.4056.

Google Scholar

[11] L.Song, S. Zhang, B.Chen, J. Ge, X. Jia: Colloids Surf. A: Vol. 360 (2010), p.1.

Google Scholar

[12] V. A. Sadykov, L. A. Isupova,, S. V. Tsybulya, S. V. Cherepanova, G. S. Litvak, E. B. Burgina, G. N. Kustova, V. N. Kolomiichuk, V. P. Ivanov, E. A. Paukshtis, A. V. Golovin, E. G. Avvakumov: J. Solid State Chem. Vol. 123 (1996), p.191

DOI: 10.1006/jssc.1996.0168

Google Scholar

[13] C. J. Doss, R. Zallen: Phys. Rev. B: Condens. Matter. Vol. 48 (1993), p.15626

Google Scholar

[14] R. M. Cornell, U. Schwertmann: The Iron Oxides: structure,properties, reactions, occurrences and uses (Wiley-VCH Verlag GmbH& Co. KgaA: Weinheim, Germany, 2003)

Google Scholar

[15] V. V. Boldyrev: Thermochim. Acta Vol. 443 (2006), p.1

Google Scholar

[16] H. Xu, X. B. Wang, L. Z. Zhang: Powder Technol. Vol. 185 (2008), p.176

Google Scholar

[17] A. A. Saida, R. Al-Qasmib: Thermochim. Acta Vol. 275 (1996) p.83

Google Scholar