Synthesis Aligned ZnS Nanocone and its Photoluminescence

Article Preview

Abstract:

We report the synthesis and characterization of ZnS nanostructures, which were grown by thermal evaporation of the ZnS powder at high temperature using iron network as the collection substrate. Scanning electron microscopy investigations show that the products present taper-like morphologies. Transmission electron microscopy studies indicate ZnS nanostructures are well crystallized. The formation mechanism of the novel nanostructure is discussed on the basis of the experimental results; The nanostructure is formed due to a fast growth of ZnS nanowire along [0001] and the subsequent “epitaxial” radial growth of the ZnS nanocone along the six (01-10) surfaces around the nanowire. A strong room-temperature photoluminescence in ZnS nanostructures has been demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

610-613

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kong XY, Ding Y, Yang R, Wang ZL, Science Vol 303 1348. (2004)

Google Scholar

[2] Duan JH, Yang SG, Liu HW, Gong JF, Huang HB, Zhao XN, Tang JL, Zhang R, Du YW, J. Cry. Grow. Vol 283 291. (2005)

Google Scholar

[3] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Lett. Vol 3 236. (2003)

Google Scholar

[4] Duan JH, Yang SG, Liu HW, Gong JF, Huang HB, Zhao XN, Zhang R, Du YW, J. Am. Chem. Soc. Vol 127 6180. (2005)

Google Scholar

[5] Wei J, Yang C, Man BY, Liu M, Chen CS, Liu AH, Feng LB, Phys. B. Conden. Matt. Vol 405 1976. (2010)

Google Scholar

[6] Gong JF, Huang HB, Wang ZQ, Zhao XN, Yang SG, Yu ZZ, Mater.Chem. Phys. Vol 112 749. (2008)

Google Scholar

[7] Liu ZW, Yang SG, Ramanujan RV, Ong CK, Mater. Lett. Vol 62 1255-1258. (2008)

Google Scholar

[8] Fang XS, Bando Y, Liao MY, Zhai TY2, Gautam U2, Li L, Koide Y, Golberg D, Adv. Func. Mater. Vol 20 500. (2010)

Google Scholar

[9] Luo L, Chen H, Zhang LC, Xu KL, Lv Y, Anal. Chim. Acta. Vol 635 183-187. (2009)

Google Scholar

[10] Yan J, Fang XS, Zhang LD, Bando Y, Gautam UK, Dierre B, Sekiguchi, Golberg D, Nano. Lett. Vol 8 2794. (2008)

DOI: 10.1021/nl801353c

Google Scholar

[11] Onodera C, Yoshida M, Shoji T, Taguchi T, Opti. Review. Vol 17 159. (2010)

Google Scholar

[12] Deulkar SH, Huang JL, Neumann-Spallart M, J. Elect. Mater. Vol 39 589. (2010)

Google Scholar

[13] Baykul, MC; Orhan, N, Thin. Solid. Film. Vol 518 1925. (2010)

Google Scholar

[14] Zhu, YC; Ruan, QC; Xu, FF, Nano. Res. Vol 2 688. (2009)

Google Scholar

[15] Pi ZB, Su XL, Yang C, Tian XK, Pei F, Zhang SX, Zheng JH, Mater. Res. Bull. Vol 43 1966. (2008)

Google Scholar

[16] Tiwary CS, Kumbhakar P, Mitra AK, Chattopadhyay K, J. Lumin. Sci. Vol 129 1366. (2009)

Google Scholar

[17] Zhuo RF, Feng HT, Yan D, Chen JT, Feng JJ, Liu JZ, Yan PX, J. Crys. Grow. Vol 310 3240. (2008)

Google Scholar

[18] Lee, JY; Kim, DS; Park, JH, Chem. Mater. Vol 19 4663. (2007)

Google Scholar

[19] Gong JF, Yang SG, Duan JH, Zhang R, Du YW, Chem. Comm. Vol 3 351. (2005)

Google Scholar

[20] Yong Ding, Xu Dong Wang, Zhong Lin Wang, Chem. Phys. Lett. Vol 398 32. (2004)

Google Scholar

[21] Su Y, Li L, Liang XM, Zhou QT, Gao M, Chen YQ, Feng Y, Mater. Lett. Vol 62 3310. (2008)

Google Scholar

[22] Gong JF, Yang SG, Huang HB, Duan J, Liu HW, Zhao XN, Zhang R, Du YW, Small Vol 2 732. (2006)

Google Scholar

[23] M Wang, L Sun, X Fu, C Liao, C Yan, Solid State Commun. Vol 115 493. (2000)

Google Scholar

[24] P Yang, M Lu, D Xu, D Yuan, G Zhou, Chem. Phys. Lett. Vol 336 76. (2001)

Google Scholar

[25] P Yang, M Lu, D Xu, D Yuan,C.Song, J. Phys. Chem. Solids. Vol 64 155. (2003)

Google Scholar