Synthesis and Characterization of Ultrafine Nanocrystalline Ti-Al Nanoparticles

Article Preview

Abstract:

Ti-Al nanoparticles and have been synthesized by the flow-levitation (FL) method. The morphology, crystal structure and chemical composition of Ti-Al nanoparticles obtained were investigated by transmission electron microscopy, X-ray diffraction and induction-coupled plasma spectroscopy. Results showed that the average grain size of these nanoparticles is about 30 nm, and it can be controlled availably by altering procedure parameters. The structure of powder is mainly double phase Ti-Al particulate composite. In addition, there are certain corresponding relation between the compositions of evaporate source master material and phase composition of alloy compound nanoparticle. The expected nanoparticle, which is mainly composition of nanocrystalline intermetallic compound, can be obtained through changing the compositions of evaporating source mastermaterial.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

672-676

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.W. Kim: JOM, Vol. 41(1989), p.24.

Google Scholar

[2] Y.-W. Kim, & D.M. Dimiduk: JOM, Vol. 43(8) (1991), p.40.

Google Scholar

[3] J.C.B. Eddoes, W. Wallace, & M.C. de Malherbe: Mater,and Manufacturing Procasses, Vol. 7(4)(1992) ,p.527

Google Scholar

[4] D.J. Ququette, & N. S. Stoloff: Key Engineering Materials, Vol. 1993, 77-78, p.289.

Google Scholar

[5] R. Bohn, T. Haubold, R. Birringer, H. Gleiter: Scripta Metal. Mater. Vol. 25 (1991), p.811.

Google Scholar

[6] H.A. Calderon, et al. Materials Science and Engineering. Vol. (2002), A329–331, p.196–205.

Google Scholar

[7] W.E. Buhro, J.A. Haber, B.E. Waller, T.J. Trentteller: Am.Chem. Soc. Symp. Ser. Vol. 1995, 210,p.20.

Google Scholar

[8] G.M. Chow, T. Ambrose, J. Xiao, F. Kaatz, A. Ervin: Nanostruct.Mater. Vol. 1993, 2, p.131.

Google Scholar

[9] J.A. Haber, J.L. Crane, W.E. Buhro, C.A. Frey, S.M.L. Sastry, J.J. Balbach, M.S. Conradi: Adv. Mater. Vol. 1996, 81,p.63.

Google Scholar

[10] C.M. Li, H. Lei, Y.J. Tang, J.S. Luo, W. Liu, Z.M. Chen:Nanotechnology, Vol. 2004, 15,p.1866−1869.

Google Scholar

[11] G. Chu, Z.Q. Xiong, W. Liu, J.J. Wei: The Chinese Journal of Nonferrous Metals, Vol.2007, 4,p.623−628.

Google Scholar

[12] G. Chu, W. Liu, T.Z. Yang, Y.J. Tang: Trans.Nonferrous Met.Soc.china. Vol . 2009, 19, pp.394-398.

Google Scholar

[13] W. Liu, T.Z. Yang, G. Chu, J.S. Luo, Y.J. Tang:.Trans.Nonferrous Met.Soc.china. Vol. 2007, 17, pp.1347-1351.

Google Scholar

[14] J.J. Wei, D. Wu, Y.J. Tang, W.D. Wu, H.L Lei: Atomic Energy Science and Technology. Vol .2008, 42(11), pp.965-968 (In Chinese).

Google Scholar

[15] J.J. Wei, Y.J. Tang, W.D. Wu, S. Wei, C.Y. Li, X.D. Yang: Vol .2003, 159(9) ,pp.869-872(In Chinese).

Google Scholar

[16] Y.J. Tang, J.J. Wei, C.Y. Li, W.D. Wu, C.Y. Wang: Acta Physica Sinica, Vol .2003, 52 (9), pp.2331-2336 (In Chinese).

Google Scholar

[17] T. Novoselova, S. Malinov, W. Sha, A. Zhecheva: Materials Science and Engineering. Vol .2004, 371, pp.103-112

Google Scholar

[18] A. Penaloza, C.R. Houska: Vol, 1983, pp.54-59

Google Scholar