The Thermal and Di-Electric Properties of a Silicone-Based Thermal Pad

Article Preview

Abstract:

The properties of a silicone-based elastomeric thermal pad filled with inexpensive ceramic additives were studied in this research. The effects of the content, particle size and mixing ratio of two additives upon the thermal and di-electrical property of the thermal pad are investigated. The result shows that the higher the content, the higher the thermal and dielectric properties are. In addition, the thermal conductivity of two particles filled thermal pads are higher than that of a single particle filled thermal pad. The thermal conductivity of the two kind of particle sizes (14 and 2 um) of 60 % (vol.) SiC filled thermal pad is the highest (2.14 W/m·K).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

804-807

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. He, B.E. Moreira, A. Overson, S.H. Nakamura, C. Bider, J. F. Briscoe, Thermal characterization of an epoxy-based underfill material for flip chip packaging, Thermochim. Acta. 357-358 (2000) 1-8.

DOI: 10.1016/s0040-6031(00)00357-9

Google Scholar

[2] M. H. Nurmawati, K.S. Siow, I.J. Rasiah, Analysis of Phase Change Material for Use as Thermal Interface Material, Int. J. Polym. Anal. Ch. 9 (2004) 213-228.

DOI: 10.1080/10236660490920219

Google Scholar

[3] F.L. Tan, C.P. Tso, Cooling of mobile electronic devices using phase change materials, Appl. Therm. Eng. 24 (2004) 159-169.

DOI: 10.1016/j.applthermaleng.2003.09.005

Google Scholar

[4] B. Zalba, J.M. Marín, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng. 23 (2003) 251-283.

DOI: 10.1016/s1359-4311(02)00192-8

Google Scholar

[5] J. Wei, Y. Kawaguchi, S. Hirano and H. Takeuchi, Study on a PCM heat storage system for rapid heat supply, Appl. Therm. Eng. 25 (2005) 2903-2920.

DOI: 10.1016/j.applthermaleng.2005.02.014

Google Scholar

[6] Y.M. Chen, J.M. Ting, Ultra high thermal conductivity polymer composites, Carbon, 40 (2002) 359-362.

DOI: 10.1016/s0008-6223(01)00112-9

Google Scholar

[7] Y.P. Mamunya, V.V. Davydenko, P. Pissis, E. V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, Eur. polym. j. 38 (2002) 1887-1897.

DOI: 10.1016/s0014-3057(02)00064-2

Google Scholar

[8] P. Peignot, K. Rhodes: Medical device technol. 15 (2004) 22-24.

Google Scholar

[9] American Society for Testing Materials, method D5470-98 (1998)

Google Scholar

[10] Q. H. Mu and S. Y. Feng, Thermal conductivity of graphite/silicone rubber prepared by solution intercalation, Thermochim. Acta. 462 (2007) 70-75.

DOI: 10.1016/j.tca.2007.06.006

Google Scholar

[11] D. Kumlutas, I. H. Tavman, M. T. Coban, Thermal conductivity of particle filled polyethylene composite materials, Compos. sci. technol. 63 (2003) 113-117.

DOI: 10.1016/s0266-3538(02)00194-x

Google Scholar

[12] N.M. Sofian, M. Rusu, R. Neagu, E. Neagu, Metal Powder-Filled Polyethylene Composites. V. Thermal Properties, J. Thermoplast. Compos. Mater. 14 (2001) 20-33.

DOI: 10.1106/9n6k-vkh1-mhyx-fbc4

Google Scholar