Synthesis and Photocatalytic Properties of Fe-Doped TiO2 Nanobelts

Article Preview

Abstract:

Fe-doped anatase TiO2 nanobelts were prepared using layered titanate nanobelts as precursor by two-step hydrothermal process. Various measurement techniques were employed to investigate the morphology and structure of products. The results show that Fe-doped TiO2 still remain nanobelt-like and structure as pure TiO2 nanobelts. Fe-cations doped in TiO2 nanobelts lead to the red-shift of the absorption edge of TiO2 nanobelts. The visible-light photodegradation of Rhodamine B on the products exhibits that Fe-doped products with low Fe-content show higher photocatalytic activity than that of TiO2 nanobelts or Fe-doped product with high Fe-content.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

849-853

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Ollis, E. Pellizzetti, and N. Serpone: Environ: Sci. Technol, Vol. 25 (1991), p.1523

Google Scholar

[2] W. Y. Su, Y. F. Zhang, Z. H. Li, L. Wu, X. X. Wang, J. Q. Li, and X. Z. Fu: Langmuir Vol. 24 (2008), p.3422

Google Scholar

[3] D. H. Kim, H. S. Hong, S. J. Kim, J. S Song, and K. S. Lee: J. Alloys Compd., Vol. 375 (2004), p.259

Google Scholar

[4] U. Diebold: Surf. Sci, Rep., Vol. 48 (2003), p.229

Google Scholar

[5] J. A. Nozik: Annu. Rev: Phys. Chem., Vol. 52 (2001), p.193

Google Scholar

[6] J. Kim, J. Choi, Y. Lee, J. Hong, J. Lee, J. Yang, W. Lee, and N. Hur: Chem.Commun., Vol. 48 (2006), p.5024

Google Scholar

[7] T. H. Ji, F. Yang, Y. Y. L, J. Y. Zhou, and J. Y. Sun: Mater. Lett., Vol. 63 (2009), p. (2044)

Google Scholar

[8] M. H. Zhou, J. G. Yu, and B. Cheng: J. Hazard. Mater., Vol. 137 (2006), p.1838

Google Scholar

[9] C. Adan, A. Bahamonde, M. Fernandez-Garcia, and A. Martinez-Arias: Appl. Catal. B: Environ., Vol. 72 (2007), p.17

Google Scholar

[10] J. F. Zhu, F. Chen, J. L. Zhang, H. J. Chen, and M. Anpo: J. Photochem. Photobiol. A: Chem., Vol. 180 (2006), p.196

Google Scholar

[11] L. F. Cui, F. Huang, M. T. Niu, L. W. Zeng, J. Xu, and Y. S. Wang: J. Mol. Catal. A: Chem., Vol. 326 (2010), p.2

Google Scholar

[12] H. Y. Zhang, T. H. Ji, Y. F. Liu, and J. W. Cai: J. Phys. Chem. C, Vol. 112(2008), p.8604

Google Scholar

[13] H. Y. Zhang, T. H. Ji, L. L. Li, X. Y. Qi, Y. F. Liu, J. W. Cai, H. Y. Du, and J. Y. Sun: Acta Phys.-Chim. Sin., Vol. 24 (2008), p.607

Google Scholar

[14] Y. Liu, T. H. Ji, J. Zhou, L. Li, and J. Y. Sun: Chem. J. Chin. Univ., Vol. 31 (2010), p.1298

Google Scholar

[15] J. Ma, Y. Wei, W. X. Liu, and W. B. Cao: Res. Chem. Intermed., Vol. (2009), p.336

Google Scholar

[16] S. Ardizzone, C. Bianchi, G. Cappelletti, S. Gialanella, C. Pirola, and V. Ragaini: J. Phys. Chem., Vol. 111 (2007), p.13222

Google Scholar

[17] J. Zhou, T. H. Ji, L. Li, and J. Y. Sun: Spectrosc. Spec. Anal, in press

Google Scholar

[18] K. Y. Jung and S. B. Park: J. Photochem. Photobiol. A: Chem., Vol. 127 (1999), p.117

Google Scholar

[19] C. A. Castro-Lopez, A. Centeno, and S. A. Giraldo: J. Catal. Today, Vol. 157 (2010), p.124

Google Scholar