Dielectric Relaxation Properties in Colossal Dielectric Constant Material Sr0.9Ba0.1Ti0.9Ru0.1O3

Article Preview

Abstract:

We investigated the colossal dielectric constant behavior and interesting dielectric relaxation over broad temperature and frequency ranges in complex perovskite Sr0.9Ba0.1Ti0.9Ru0.1O3 ceramics by using HP4294 impedance analyzer. Through the discussion, there exists a clear link between the dielectric relaxation and the sample conductivity. It’s believed that hopping of electrons between color centers not only produce conductivity but also give rise to dielectric relaxation behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. B. Wu, C. -W. Nan, Y. H. Lin, and Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO, Physical Review Letters, vol. 89, Oct. 2002, pp.217601-217604, doi: 10. 1103/ PhysRevLett. 89. 217601.

DOI: 10.1103/physrevlett.89.217601

Google Scholar

[2] D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor, Applied Physical Letters, vol. 80, Jan. 2002, pp.2153-2155, doi: 10. 1063/1. 1463211.

DOI: 10.1063/1.1463211

Google Scholar

[3] C. C. Wang and L. W. Zhang, Polaron relaxation related to localized charge carriers in CaCu3Ti4O12, Applied Physical Letters, vol. 88, Apr. 2006, p.042906 – 042908, doi: 10. 1063/1. 2719608.

Google Scholar

[4] Z. Wang, X. M. Chen, L. Ni, Y. Y. Liu, and X. Q. Liu, Dielectric relaxations in Ba(Fe1/2Ta1/2)O3 giant dielectric constant ceramics, Applied Physical Letters, vol. 90, Mar. 2007, pp.102905-102907, doi: 10. 1063/1. 2711767.

DOI: 10.1063/1.2711767

Google Scholar

[5] I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya, and L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3 on ferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb), Journal of Applied Physics, vol. 93, Jan. 2003, pp.4130-4136.

DOI: 10.1063/1.1558205

Google Scholar

[6] S. Saha and T. P. Sinha, Low-temperature scaling behavior of BaFe0. 5Nb0. 5O3, Physical Review B, vol. 65, Mar. 2002, pp.134103-134109, doi: 10. 1103/PhysRevB. 65. 134103.

Google Scholar

[7] C. F. Yang, Improvement of the Sintering and Dielectric Characteristics of Surface Barrier Layer Capacitors by CuO Addition, Japanese Journal of Applied Physics, Part 1, vol. 35, Sep. 1995, pp.1806-1813, doi: 10. 1143/ JJAP. 35. 1806.

DOI: 10.1143/jjap.35.1806

Google Scholar

[8] Y. D. Xia, W. Y. He, L. Chen, X. K. Meng, and Z. G. Liu, Field-induced resistive switching based on space-charge-limited current, Applied Physical Letters, vol. 90, Jan. 2007, pp.022907-022909, doi: 10. 1063/1. 2430912.

DOI: 10.1063/1.2430912

Google Scholar

[9] A. Callaghan, C. W. Moeller, and R. Ward, Magnetic Interactions in Ternary Ruthenium Oxides, Inorganic Chemistry, Vol. 5, Sep. 1966, pp.1572-1576, doi: 10. 1021/ ic50043a023.

DOI: 10.1021/ic50043a023

Google Scholar

[10] T. Wei, C. Zhu, K. F. Wang, H. L. Cai, J. S. Zhu, and J. -M. Liu, Influence of A-site codoping on ferroelectricity of quantum paraelectric SrTiO3, Journal of Applied Physics, vol. 103, Jan. 2008, pp.124104-124110, doi: 10. 1063/1. 2940372.

DOI: 10.1063/1.2940372

Google Scholar

[11] T Wei, Y Y Guo, Y J Guo, S J Luo, K F Wang, J-M Liu, P W Wang and D P Yu, Competition between quantum fluctuations and antiferroelectric order in Ru-doped Sr0. 8Ca0. 2Ti1−xRuxO3, Journal of Physics: Condensed Matter, vol. 21, Aug. 2009, pp.375901-375907.

DOI: 10.1088/0953-8984/21/37/375901

Google Scholar

[12] A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea, London, (1983).

Google Scholar

[13] A. Chen, Y. Zhi, and L. E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3, Physical Review B, vol. 62, Jul. 2000, pp.228-236, doi: 10. 1103/PhysRevB. 62. 228.

Google Scholar

[14] R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, and P. A. Midgley, Impedance spectroscopy of epitaxial multiferroic thin films, Physical Review B,vol. 75, Jun. 2007, pp.245111-245118, doi: 10. 1103/ PhysRevB. 75. 245111.

DOI: 10.1103/physrevb.75.245111

Google Scholar

[15] Y. Wang, Q. Y. Shao, and J. -M. Liu, Enhanced fatigue-endurance of ferroelectric Pb1−xSrx(Zr0. 52Ti0. 48)O3 thin films prepared by sol-gel method, " Applied Physical Letters, vol. 88, Mar. 2006, pp.122902-122904.

DOI: 10.1063/1.2188591

Google Scholar

[16] L. C. Walters and R. E. Grace, Formation of point defects in strontium titanate, " Journal of Physics and Chemistry of Solids, vol. 28, Aug. 1967, pp.239-244.

DOI: 10.1016/0022-3697(67)90114-x

Google Scholar

[17] N. G. Eror and U. Balachandran, self-compensation in lanthanum-doped strontium titanate, Journal of Solid State Chemistry, vol. 40, Nov. 1981, pp.85-91, doi: 10. 1016/0022-4596(81)90365-0.

DOI: 10.1016/0022-4596(81)90365-0

Google Scholar

[18] Z. G. Lu, J. P. Bonnet, J. Reves, and P. Hagennuller, Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic Pb2KNb4TaO15, Solid State Ionics, Vol. 57, Oct. 1992, pp.235-244.

DOI: 10.1016/0167-2738(92)90153-g

Google Scholar

[19] E. Iguchi, N. Kubota, T. Nakamori, N. Yamamoto, and K. J. Lee, Polaronic conduction in n-type BaTiO3 doped with La2O3 or Gd2O3, Physical Review B, vol. 43, Apr. 1991, pp.8646-8649, doi: 10. 1103/ PhysRevB. 43. 8646.

Google Scholar

[20] M. Maglione and M. Belkaoumi, Electron–relaxation-mode interaction in BaTiO3: Nb, Physical Review B, vol. 45, Feb. 1992, pp.2029-2034, doi: 10. 1103/ PhysRevB. 45. (2029).

DOI: 10.1103/physrevb.45.2029

Google Scholar