A New Model of Discribing the Band Gap Bowing of III Nitride Alloys

Article Preview

Abstract:

In the paper, a model is developed to discribe the band gap energy of Ⅲ nitride alloys. A new parameter A is used to discribe the band gap bowing. The new bowing parameter A is obtained by fitting the experimental values of the band gap energy. AAlGaN =0.46, AInGaN =0.59 and AInAlN =1.90 are obtained by fitting the experimental values of the band gap energy for AlGaN, InGaN and InAlN, respectively. The model is also suitable to discribe the band gap energy of other Ⅲ-Ⅴ ternary alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Yoshida, S. Misawa and S. Gonda, Properties of AlGaN films prepared by molecular beam epitaxy, J. Appl. Phys., vol. 53, 1982, pp.6844-6848.

Google Scholar

[2] T. J. Ochalski, B. Gil, P. Lefebvre et al., Photoreflectance investigation of the bowing parameter in AlGaN alloys lattice match to GaN, Appl. Phys. lett., vol. 74, May. 1999, pp.3353-3355.

DOI: 10.1063/1.123342

Google Scholar

[3] H. Jiang, G.Y. Zhao, H. Ishikawa et al., Determination of exciton transition energy and bowing parameter of AlGaN alloy in AlGaN/GaN heterostructure by means of reflectance mesurement, J. Appl. Phys., vol. 89, Jan. 2001, pp.1046-1052.

DOI: 10.1063/1.1334923

Google Scholar

[4] S.R. Lee, A.F. Wright, M.H. Crawford et al., The band-gap bowing of AlGaN alloys, J. Appl. Phys., vol. 74, May. 1999, pp.3344-3346.

DOI: 10.1063/1.123339

Google Scholar

[5] B. Liu, R. Zhang, Z. L. Xie et al., Al incorporation, structural and optical properties of AlGaN (0. 13≤x≤0. 8) alloys grown by MOCVD, J. Cryst. Growth. vol. 310, Oct. 2008, pp.4499-4502. dio: 10. 1016 /j. jcrysgro. 2008. 0 7. 076.

DOI: 10.1016/j.jcrysgro.2008.07.076

Google Scholar

[6] N. Teofilov, K. Thonke, R. Sauer et al., Optical investigation of AlGaN epitaxial films grown on AlN buffter layers, Diamond and Related Materials, vol. 11, 2002, pp.892-895.

DOI: 10.1016/s0925-9635(01)00669-0

Google Scholar

[7] Feng Yun, Michael, A. Reshchikov, L. He, et al., Energy band bowing parameter in AlGaN, J. Appl. Phys., vol. 92, Oct. 2002, pp.4837-4839. dio10. 1063/1. 150 8420.

Google Scholar

[8] H. Angerer, D. Brunner, F. Freudenberg, et al., Determination of the Al mole fraction and the band gap bowing of epitaxial, Appl. Phys. lett., vol. 71, sep. 1997, pp.1504-1506.

DOI: 10.1063/1.119949

Google Scholar

[9] S. A. Nikishin, N. N. Faleev, A. S. Zubrilov, V. G. Antipov, and H. Temkin, Growth of AlGaN on Si(111) by gas source molecular beam epitaxy, Appl. Phys. Lett., vol. 76, May. 2000, p.3028.

DOI: 10.1063/1.126568

Google Scholar

[10] M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione and K. F. Brennan, Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlGaN, InGaN, and InAlN, J. Appl. Phys., vol. 88, Dec. 2000, pp.6476-6482.

DOI: 10.1063/1.1309047

Google Scholar

[11] J. Fritsch, O. F. Sankey, K. E. Schmidt and J. B. Page, First-principles local-orbital calculation of the structural and electronic properties of ordered and random alloys of GaN and AlN, J. Phys. Condens. Matter, vol. 11, Jan. 1999, pp.2351-2361.

DOI: 10.1088/0953-8984/11/11/007

Google Scholar

[12] M. Van, Schilfgaarde, A. Sher and A.B. Chen, Theo- ry of A1N, GaN, InN and their alloys, J. Cryst. Growth, vol. 178, 1997, pp.8-31.

Google Scholar

[13] Bo-Ting Liou, Sheng-Horng Yen, Yen-Kuang Kuo, Vegard's law deviation in band gaps and bowing parameters of the wurtzite III-nitride ternary alloys, Proc. of SPIE., vol. 5628, 2005, pp.296-305. doi: 10. 1117/1 2. 575300.

DOI: 10.1117/12.575300

Google Scholar

[14] Z. Dridi, B. Bouhafs and P. Ruterana, First-principles investigation of lattice constants and bowing parameters in wurtzite AlGaN, InGaN and InAlN alloys, Semicond. Sci. Technol., vol. 18, Aug. 2003, pp.850-856.

DOI: 10.1088/0268-1242/18/9/307

Google Scholar

[15] B-T. Liou, S-H. Yen, Y-K. Kuo, First-principles calculation for bowing parameter of wurtzite AlGaN, Appl. Phys. A. vol. 81, Apr. 2005, pp.1459-1463. dio: 10. 1007/s00339-005-3236-y.

DOI: 10.1007/s00339-005-3236-y

Google Scholar

[16] Y. Ishitani, M. Fujiwara, T. Shinada, Alloy compos- ition fluctuation and band edge energy structure of In-rich InGaN layers investigated by systematic spectroscopy, phys. stat. sol. (c), vol. 4, May. 2007, pp.2428-2432.

DOI: 10.1002/pssc.200674794

Google Scholar

[17] G. Franssen, I. Gorczyca, T. Suski, et al., Bowing of the band gap pressure coefficient in InGaN alloys, J. Ap- pl. Phys., vol. 103, Feb. 2008, pp.033514-6. dio: 10. 1063 /1. 2837072.

Google Scholar

[18] J. Wu, W. Walukiewicz, K. M. Yu, et al., Small ban- d gap bowing in InGaN alloys, Appl. Phys. lett., vol. 80, Jun. 2002, pp.4741-4743. dio: 10. 1063/1. 1489481.

DOI: 10.1063/1.1489481

Google Scholar

[19] M. Moret, B. Gil, S. Ruffenach, et al., "Optical, structural investigations and band-gap bowing parameter of GaInN alloys J. Cryst. Growth, vol. 311, 2009, pp.2795-2797. dio: 10. 1016/j. jcrysgro. 20 09. 01. 009.

DOI: 10.1016/j.jcrysgro.2009.01.009

Google Scholar

[20] C. Caetano, L. K. Teles, M. Marques, Phase stability, chemical bonds, and gap bowing of InGaN alloys: compa- rison between cubic and wurtzite structures, Phys. Rev. B, vol 74, Jul. 2006, pp.045215-8. dio: 10. 1103/ PhysRevB. 74. 045215.

Google Scholar

[21] Y-K Kuo, B-T Liou , S-H Yen et al., Vegard's law deviation in lattice constant and band gap bowing para- meter of zincblende InGaN, Optics Communications, vol. 237, Apr. 2004, pp.363-369. doi: 10. 1016/j. optcom. 2 004. 04. 012.

DOI: 10.1016/j.optcom.2004.04.012

Google Scholar

[22] Yen-Kuang Kuo , Han-Yi Chu , Sheng-Horng Yen, Bowing parameter of zincblende InGaN, Optics Communications, vol. 280, Jul. 2007, pp.153-156. doi: 10. 1016/j. optcom. 2007. 07. 058.

DOI: 10.1016/j.optcom.2007.07.058

Google Scholar

[23] M. Ferhat and F. Bechstedt, First-principles calculations of gap bowing in InGaN and InAlN alloys: Relation to structural and thermodynamic properties, Phys. Rev. B, vol. 65, Feb. 2002, pp.075213-7. dio: 10. 1 103/ PhysRevB. 65. 075213.

Google Scholar

[24] M. Androulidaki , N. T. Pelekanos, K. Tsagaraki et al., Energy gaps and bowing parameters of InAlGaN ternary and quaternary alloys, phys. stat. sol. (c), vol. 3, May. 2006, p.1866. dio: 10. 1002/pssc. 200565280.

DOI: 10.1002/pssc.200565280

Google Scholar

[25] A. Ben Fredi, M. Debbichi, M. Said, Influence of the composition fluctuation and the disorder on the bowing band gap in semiconductor material, Microelectronics journal, vol. 38, Aug. 2007, pp.860-870. dio: 10. 1016/j. mejo. 2007. 07. 002.

DOI: 10.1016/j.mejo.2007.07.002

Google Scholar

[26] J. Wu, W. Walukiewicz, K.M. Yu et al., Universal bandgap bowing in group-III nitride alloys, Solid State Communications, vol. 127, May. 2003, pp.411-414. doi: 10. 1016/S0038-1098(03)00457-5.

DOI: 10.1016/s0038-1098(03)00457-5

Google Scholar

[27] R. E. Jones, R. Broesler, K. M. Yu, Band gap bowing parameter of InAlN, J. Appl. Phys., vol. 104, Dec. 2008, pp.123501-6. dio: 10. 1063 /1. 3039509.

Google Scholar

[28] S. J. Lee, T.S. Kwon, K. Nahm, C. K. Kim, J. Phys.: Condens. Matter., vol. 2, 1990, p.3253.

Google Scholar

[29] J. A. Van Vechten, T.K. Bergstresser, Electronic Structures of Semiconductor Alloys, Phys. Rev. B. vol. 1, Apr. 1970, pp.3351-3358. dio: 10. 1103/PhysRevB. 1. 3351.

DOI: 10.1103/physrevb.1.3351

Google Scholar

[30] A. Zunger, J.E. Jaffe, Structural origin of optical bowing in semiconductor alloy, Phys. Rev. Lett., vol. 51, Aug. 1983, pp.662-665.

DOI: 10.1103/physrevlett.51.662

Google Scholar

[31] Huang Kun and Han Ruqi. Solid physics, Advanced Education Press, Beijing, 1988. pp.570-573.

Google Scholar

[32] K. T. Tsen et al., "Optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based wide bandgap semiconductors. Superlattices and Microstructures. vol. 38, 2005, pp.77-114. dio: 10. 1016/j. spmi. 2005. 04. 004.

DOI: 10.1016/j.spmi.2005.04.004

Google Scholar

[33] P. B. Perry and R. F. Rutz, The optical absorption edge of single-crystal AlN prepared by a closed-spaced vapor process, Appl. Phys. Lett., vol. 33, 1978, pp.319-321.

DOI: 10.1063/1.90354

Google Scholar

[34] Y. Uesaka, et al. band gap widening of MBE grown InN layers by impurity incorporation, J Cryst Growth. vol. 278, 2005, pp.402-405.

DOI: 10.1016/j.jcrysgro.2005.01.009

Google Scholar

[35] W. Walukiewicz, S. X. Li , J. Wu, et al., Optical properties and electronic structure of InN and In-rich group III-nitride alloys, J. Cryst. Growth, vol. 269, 2004, pp.119-127. dio: 10. 1016/j. jcrysgro. 2004. 05. 041.

DOI: 10.1016/j.jcrysgro.2004.05.041

Google Scholar

[36] B. Monemara, P. P. Paskova, A. Kasicb. Optical properties of InN—the bandgap question, Superlattices and Microsturctures , vol. 38, 2005, pp.38-56. doi: 10. 1016/ j. spmi. 2005. 04. 006.

DOI: 10.1016/j.spmi.2005.04.006

Google Scholar

[37] Chen P P , Makino H , Li T X , et al., Optical properties of InN films grown by molecular beam epitaxy at different conditions, Thin Solid Films , vol. 513, 2006, p.166.

DOI: 10.1016/j.tsf.2006.02.006

Google Scholar

[38] P. Specht et al., Zincblende and wurtzite phases in InN epilayers and their respective band transitions, J. Cryst. Growth. vol. 288, 2006, pp.225-229. dio: 10. 1016/j. jcrysgro. 2005. 12. 002.

DOI: 10.1016/j.jcrysgro.2005.12.002

Google Scholar

[39] Z. L. Xie , R. Zhang , B. Liu et al., The high mobility InN film grown by MOCVD with GaN buffer layer, J Cryst Growth, vol. 298, 2007, pp.409-412.

DOI: 10.1016/j.jcrysgro.2006.11.026

Google Scholar

[40] C. S. Gallinat , G. Koblmülle, J. S. Brown et al., In-polar InN grown by plasma-assisted molecular beam epitaxy, Appl Phys Lett , vol. 89 , 2006, p.032109.

DOI: 10.1063/1.2234274

Google Scholar

[41] G. Koblmülle, C. S. Gallinat S. Bernardis et al. Optimization of the surface and st ructural quality of N-face InN grown by molecular beam epitaxy, Appl Phys Lett , vol. 89, 2006, p.071902.

DOI: 10.1063/1.2335685

Google Scholar

[42] M. Alevli et al., Characterization of InN layers grown by high pressure chemical vapor deposition, Appl. Phys. Lett., vol. 89, 2006, p.112119.

DOI: 10.1063/1.2352797

Google Scholar

[43] K. S. Kim, A. Saxler, P. Kung, M. Razeghi, and K. Y. Lim, Determination of the band-gap energy of AlInN grown by metal–organic chemical-vapor deposition, Appl. Phys. Lett. vol. 71, 1997, pp.800-802.

DOI: 10.1063/1.119650

Google Scholar

[44] I. S. Roqana et al., Blue cathodoluminescence from thulium implanted AlGaN and InAlN Superlattices and Microstructures, vol. 40, 2006, pp.445-451. dio: 10. 1016/ j. spmi. 2006. 07. 02.

DOI: 10.1016/j.spmi.2006.07.029

Google Scholar

[45] I. V. Kityk et al., Electronic Structure and X-Ray Photoelectron Spectroscopy of Wurtzite GaAlN, Cryst. Res. Technol. vol. 36, 2001, pp.183-190.

DOI: 10.1002/1521-4079(200102)36:2<183::aid-crat183>3.0.co;2-d

Google Scholar

[46] S. K. Pugh et al., Band-gap and k. p. parameters for GaAlN and GaInN alloys, Jpn. J. Appl Phys. vol. 86, 1999, pp.3768-3772.

DOI: 10.1063/1.371285

Google Scholar

[47] K.P. O Donnell et al., "The composition dependence of the InGaN bandgap J. Cryst. Growth. vol. 269, 2004, pp.100-105. dio: 10. 1016/j. jcrysgro. 2004. 05. 040.

Google Scholar

[48] W. Shan et al., Optical properties of InGaN alloys grown by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys. vol. 84, Oct. 1998, pp.4452-4458.

Google Scholar

[49] Yoshihiro Ishitani et al., Alloy composition fluctuation and band edge energy structure of In-rich InGaN layers investigated by systematic spectroscopy, phys. stat. sol. (c) vol. 4, 2007, pp.2428-2432. dio: 10. 1002/pssc. 200674794.

DOI: 10.1002/pssc.200674794

Google Scholar

[50] Tevye Kuykendall et al., Complete composition tunability of InGaN nanowires using a combinatorial approach, Nature Materials. vol. 6, 2007, pp.951-956. dio: 10. 1038/nmat2037.

DOI: 10.1038/nmat2037

Google Scholar

[51] Bal. K. Agrawal et al., Ab inito calculation of electronic properties of GaInN alloys, J. Phys.: Condens. Matter. vol. 9, Jun. 1997, pp.1763-1775. doi: 10. 1088/0953 -8984/9/8/008.

DOI: 10.1088/0953-8984/9/8/008

Google Scholar