[1]
S. Yoshida, S. Misawa and S. Gonda, Properties of AlGaN films prepared by molecular beam epitaxy, J. Appl. Phys., vol. 53, 1982, pp.6844-6848.
Google Scholar
[2]
T. J. Ochalski, B. Gil, P. Lefebvre et al., Photoreflectance investigation of the bowing parameter in AlGaN alloys lattice match to GaN, Appl. Phys. lett., vol. 74, May. 1999, pp.3353-3355.
DOI: 10.1063/1.123342
Google Scholar
[3]
H. Jiang, G.Y. Zhao, H. Ishikawa et al., Determination of exciton transition energy and bowing parameter of AlGaN alloy in AlGaN/GaN heterostructure by means of reflectance mesurement, J. Appl. Phys., vol. 89, Jan. 2001, pp.1046-1052.
DOI: 10.1063/1.1334923
Google Scholar
[4]
S.R. Lee, A.F. Wright, M.H. Crawford et al., The band-gap bowing of AlGaN alloys, J. Appl. Phys., vol. 74, May. 1999, pp.3344-3346.
DOI: 10.1063/1.123339
Google Scholar
[5]
B. Liu, R. Zhang, Z. L. Xie et al., Al incorporation, structural and optical properties of AlGaN (0. 13≤x≤0. 8) alloys grown by MOCVD, J. Cryst. Growth. vol. 310, Oct. 2008, pp.4499-4502. dio: 10. 1016 /j. jcrysgro. 2008. 0 7. 076.
DOI: 10.1016/j.jcrysgro.2008.07.076
Google Scholar
[6]
N. Teofilov, K. Thonke, R. Sauer et al., Optical investigation of AlGaN epitaxial films grown on AlN buffter layers, Diamond and Related Materials, vol. 11, 2002, pp.892-895.
DOI: 10.1016/s0925-9635(01)00669-0
Google Scholar
[7]
Feng Yun, Michael, A. Reshchikov, L. He, et al., Energy band bowing parameter in AlGaN, J. Appl. Phys., vol. 92, Oct. 2002, pp.4837-4839. dio10. 1063/1. 150 8420.
Google Scholar
[8]
H. Angerer, D. Brunner, F. Freudenberg, et al., Determination of the Al mole fraction and the band gap bowing of epitaxial, Appl. Phys. lett., vol. 71, sep. 1997, pp.1504-1506.
DOI: 10.1063/1.119949
Google Scholar
[9]
S. A. Nikishin, N. N. Faleev, A. S. Zubrilov, V. G. Antipov, and H. Temkin, Growth of AlGaN on Si(111) by gas source molecular beam epitaxy, Appl. Phys. Lett., vol. 76, May. 2000, p.3028.
DOI: 10.1063/1.126568
Google Scholar
[10]
M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione and K. F. Brennan, Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlGaN, InGaN, and InAlN, J. Appl. Phys., vol. 88, Dec. 2000, pp.6476-6482.
DOI: 10.1063/1.1309047
Google Scholar
[11]
J. Fritsch, O. F. Sankey, K. E. Schmidt and J. B. Page, First-principles local-orbital calculation of the structural and electronic properties of ordered and random alloys of GaN and AlN, J. Phys. Condens. Matter, vol. 11, Jan. 1999, pp.2351-2361.
DOI: 10.1088/0953-8984/11/11/007
Google Scholar
[12]
M. Van, Schilfgaarde, A. Sher and A.B. Chen, Theo- ry of A1N, GaN, InN and their alloys, J. Cryst. Growth, vol. 178, 1997, pp.8-31.
Google Scholar
[13]
Bo-Ting Liou, Sheng-Horng Yen, Yen-Kuang Kuo, Vegard's law deviation in band gaps and bowing parameters of the wurtzite III-nitride ternary alloys, Proc. of SPIE., vol. 5628, 2005, pp.296-305. doi: 10. 1117/1 2. 575300.
DOI: 10.1117/12.575300
Google Scholar
[14]
Z. Dridi, B. Bouhafs and P. Ruterana, First-principles investigation of lattice constants and bowing parameters in wurtzite AlGaN, InGaN and InAlN alloys, Semicond. Sci. Technol., vol. 18, Aug. 2003, pp.850-856.
DOI: 10.1088/0268-1242/18/9/307
Google Scholar
[15]
B-T. Liou, S-H. Yen, Y-K. Kuo, First-principles calculation for bowing parameter of wurtzite AlGaN, Appl. Phys. A. vol. 81, Apr. 2005, pp.1459-1463. dio: 10. 1007/s00339-005-3236-y.
DOI: 10.1007/s00339-005-3236-y
Google Scholar
[16]
Y. Ishitani, M. Fujiwara, T. Shinada, Alloy compos- ition fluctuation and band edge energy structure of In-rich InGaN layers investigated by systematic spectroscopy, phys. stat. sol. (c), vol. 4, May. 2007, pp.2428-2432.
DOI: 10.1002/pssc.200674794
Google Scholar
[17]
G. Franssen, I. Gorczyca, T. Suski, et al., Bowing of the band gap pressure coefficient in InGaN alloys, J. Ap- pl. Phys., vol. 103, Feb. 2008, pp.033514-6. dio: 10. 1063 /1. 2837072.
Google Scholar
[18]
J. Wu, W. Walukiewicz, K. M. Yu, et al., Small ban- d gap bowing in InGaN alloys, Appl. Phys. lett., vol. 80, Jun. 2002, pp.4741-4743. dio: 10. 1063/1. 1489481.
DOI: 10.1063/1.1489481
Google Scholar
[19]
M. Moret, B. Gil, S. Ruffenach, et al., "Optical, structural investigations and band-gap bowing parameter of GaInN alloys J. Cryst. Growth, vol. 311, 2009, pp.2795-2797. dio: 10. 1016/j. jcrysgro. 20 09. 01. 009.
DOI: 10.1016/j.jcrysgro.2009.01.009
Google Scholar
[20]
C. Caetano, L. K. Teles, M. Marques, Phase stability, chemical bonds, and gap bowing of InGaN alloys: compa- rison between cubic and wurtzite structures, Phys. Rev. B, vol 74, Jul. 2006, pp.045215-8. dio: 10. 1103/ PhysRevB. 74. 045215.
Google Scholar
[21]
Y-K Kuo, B-T Liou , S-H Yen et al., Vegard's law deviation in lattice constant and band gap bowing para- meter of zincblende InGaN, Optics Communications, vol. 237, Apr. 2004, pp.363-369. doi: 10. 1016/j. optcom. 2 004. 04. 012.
DOI: 10.1016/j.optcom.2004.04.012
Google Scholar
[22]
Yen-Kuang Kuo , Han-Yi Chu , Sheng-Horng Yen, Bowing parameter of zincblende InGaN, Optics Communications, vol. 280, Jul. 2007, pp.153-156. doi: 10. 1016/j. optcom. 2007. 07. 058.
DOI: 10.1016/j.optcom.2007.07.058
Google Scholar
[23]
M. Ferhat and F. Bechstedt, First-principles calculations of gap bowing in InGaN and InAlN alloys: Relation to structural and thermodynamic properties, Phys. Rev. B, vol. 65, Feb. 2002, pp.075213-7. dio: 10. 1 103/ PhysRevB. 65. 075213.
Google Scholar
[24]
M. Androulidaki , N. T. Pelekanos, K. Tsagaraki et al., Energy gaps and bowing parameters of InAlGaN ternary and quaternary alloys, phys. stat. sol. (c), vol. 3, May. 2006, p.1866. dio: 10. 1002/pssc. 200565280.
DOI: 10.1002/pssc.200565280
Google Scholar
[25]
A. Ben Fredi, M. Debbichi, M. Said, Influence of the composition fluctuation and the disorder on the bowing band gap in semiconductor material, Microelectronics journal, vol. 38, Aug. 2007, pp.860-870. dio: 10. 1016/j. mejo. 2007. 07. 002.
DOI: 10.1016/j.mejo.2007.07.002
Google Scholar
[26]
J. Wu, W. Walukiewicz, K.M. Yu et al., Universal bandgap bowing in group-III nitride alloys, Solid State Communications, vol. 127, May. 2003, pp.411-414. doi: 10. 1016/S0038-1098(03)00457-5.
DOI: 10.1016/s0038-1098(03)00457-5
Google Scholar
[27]
R. E. Jones, R. Broesler, K. M. Yu, Band gap bowing parameter of InAlN, J. Appl. Phys., vol. 104, Dec. 2008, pp.123501-6. dio: 10. 1063 /1. 3039509.
Google Scholar
[28]
S. J. Lee, T.S. Kwon, K. Nahm, C. K. Kim, J. Phys.: Condens. Matter., vol. 2, 1990, p.3253.
Google Scholar
[29]
J. A. Van Vechten, T.K. Bergstresser, Electronic Structures of Semiconductor Alloys, Phys. Rev. B. vol. 1, Apr. 1970, pp.3351-3358. dio: 10. 1103/PhysRevB. 1. 3351.
DOI: 10.1103/physrevb.1.3351
Google Scholar
[30]
A. Zunger, J.E. Jaffe, Structural origin of optical bowing in semiconductor alloy, Phys. Rev. Lett., vol. 51, Aug. 1983, pp.662-665.
DOI: 10.1103/physrevlett.51.662
Google Scholar
[31]
Huang Kun and Han Ruqi. Solid physics, Advanced Education Press, Beijing, 1988. pp.570-573.
Google Scholar
[32]
K. T. Tsen et al., "Optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based wide bandgap semiconductors. Superlattices and Microstructures. vol. 38, 2005, pp.77-114. dio: 10. 1016/j. spmi. 2005. 04. 004.
DOI: 10.1016/j.spmi.2005.04.004
Google Scholar
[33]
P. B. Perry and R. F. Rutz, The optical absorption edge of single-crystal AlN prepared by a closed-spaced vapor process, Appl. Phys. Lett., vol. 33, 1978, pp.319-321.
DOI: 10.1063/1.90354
Google Scholar
[34]
Y. Uesaka, et al. band gap widening of MBE grown InN layers by impurity incorporation, J Cryst Growth. vol. 278, 2005, pp.402-405.
DOI: 10.1016/j.jcrysgro.2005.01.009
Google Scholar
[35]
W. Walukiewicz, S. X. Li , J. Wu, et al., Optical properties and electronic structure of InN and In-rich group III-nitride alloys, J. Cryst. Growth, vol. 269, 2004, pp.119-127. dio: 10. 1016/j. jcrysgro. 2004. 05. 041.
DOI: 10.1016/j.jcrysgro.2004.05.041
Google Scholar
[36]
B. Monemara, P. P. Paskova, A. Kasicb. Optical properties of InN—the bandgap question, Superlattices and Microsturctures , vol. 38, 2005, pp.38-56. doi: 10. 1016/ j. spmi. 2005. 04. 006.
DOI: 10.1016/j.spmi.2005.04.006
Google Scholar
[37]
Chen P P , Makino H , Li T X , et al., Optical properties of InN films grown by molecular beam epitaxy at different conditions, Thin Solid Films , vol. 513, 2006, p.166.
DOI: 10.1016/j.tsf.2006.02.006
Google Scholar
[38]
P. Specht et al., Zincblende and wurtzite phases in InN epilayers and their respective band transitions, J. Cryst. Growth. vol. 288, 2006, pp.225-229. dio: 10. 1016/j. jcrysgro. 2005. 12. 002.
DOI: 10.1016/j.jcrysgro.2005.12.002
Google Scholar
[39]
Z. L. Xie , R. Zhang , B. Liu et al., The high mobility InN film grown by MOCVD with GaN buffer layer, J Cryst Growth, vol. 298, 2007, pp.409-412.
DOI: 10.1016/j.jcrysgro.2006.11.026
Google Scholar
[40]
C. S. Gallinat , G. Koblmülle, J. S. Brown et al., In-polar InN grown by plasma-assisted molecular beam epitaxy, Appl Phys Lett , vol. 89 , 2006, p.032109.
DOI: 10.1063/1.2234274
Google Scholar
[41]
G. Koblmülle, C. S. Gallinat S. Bernardis et al. Optimization of the surface and st ructural quality of N-face InN grown by molecular beam epitaxy, Appl Phys Lett , vol. 89, 2006, p.071902.
DOI: 10.1063/1.2335685
Google Scholar
[42]
M. Alevli et al., Characterization of InN layers grown by high pressure chemical vapor deposition, Appl. Phys. Lett., vol. 89, 2006, p.112119.
DOI: 10.1063/1.2352797
Google Scholar
[43]
K. S. Kim, A. Saxler, P. Kung, M. Razeghi, and K. Y. Lim, Determination of the band-gap energy of AlInN grown by metal–organic chemical-vapor deposition, Appl. Phys. Lett. vol. 71, 1997, pp.800-802.
DOI: 10.1063/1.119650
Google Scholar
[44]
I. S. Roqana et al., Blue cathodoluminescence from thulium implanted AlGaN and InAlN Superlattices and Microstructures, vol. 40, 2006, pp.445-451. dio: 10. 1016/ j. spmi. 2006. 07. 02.
DOI: 10.1016/j.spmi.2006.07.029
Google Scholar
[45]
I. V. Kityk et al., Electronic Structure and X-Ray Photoelectron Spectroscopy of Wurtzite GaAlN, Cryst. Res. Technol. vol. 36, 2001, pp.183-190.
DOI: 10.1002/1521-4079(200102)36:2<183::aid-crat183>3.0.co;2-d
Google Scholar
[46]
S. K. Pugh et al., Band-gap and k. p. parameters for GaAlN and GaInN alloys, Jpn. J. Appl Phys. vol. 86, 1999, pp.3768-3772.
DOI: 10.1063/1.371285
Google Scholar
[47]
K.P. O Donnell et al., "The composition dependence of the InGaN bandgap J. Cryst. Growth. vol. 269, 2004, pp.100-105. dio: 10. 1016/j. jcrysgro. 2004. 05. 040.
Google Scholar
[48]
W. Shan et al., Optical properties of InGaN alloys grown by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys. vol. 84, Oct. 1998, pp.4452-4458.
Google Scholar
[49]
Yoshihiro Ishitani et al., Alloy composition fluctuation and band edge energy structure of In-rich InGaN layers investigated by systematic spectroscopy, phys. stat. sol. (c) vol. 4, 2007, pp.2428-2432. dio: 10. 1002/pssc. 200674794.
DOI: 10.1002/pssc.200674794
Google Scholar
[50]
Tevye Kuykendall et al., Complete composition tunability of InGaN nanowires using a combinatorial approach, Nature Materials. vol. 6, 2007, pp.951-956. dio: 10. 1038/nmat2037.
DOI: 10.1038/nmat2037
Google Scholar
[51]
Bal. K. Agrawal et al., Ab inito calculation of electronic properties of GaInN alloys, J. Phys.: Condens. Matter. vol. 9, Jun. 1997, pp.1763-1775. doi: 10. 1088/0953 -8984/9/8/008.
DOI: 10.1088/0953-8984/9/8/008
Google Scholar