Microwave Absorbing Properties of FeXCo1-X(x=0.7, 0.8) Alloys with Spherical Nanoparticles

Article Preview

Abstract:

FexCo1-x alloys were prepared by low temperature hydrothermal method. The influence of Fe content on static magnetic and microwave absorbing properties was studied. XRD results show that FexCo1-x alloys are single-phased body-centered cubic (BCC) structure for both 70% and 80% Fe content. The lattice constant of the alloys increases with increasing Fe content. The coercivity decreases with the increase of Fe content. The composites with high resistivity were prepared by homogeneously mixing FexCo1-x alloy nanoparticles and paraffin wax, and their microwave absorption properties were studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 299-300)

Pages:

484-488

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.H. Kodama: J. Magn. Magn. Mater Vol. 200 (1999), p.359.

Google Scholar

[2] X. Batlle and A. Labarta: Appl. Phys. Lett Vol. 35 (2002), p.15.

Google Scholar

[3] J.G. Li, Y. Qin, X.L. Kou, J.J. Huang: Nanotechnology Vol. 15 (2004), p.982.

Google Scholar

[4] J.G. Li, Y. Qin, X.L. Kou, J.J. Huang: J. Nanosci. Nanotechno Vol. 5 (2005), p.1699.

Google Scholar

[5] F. Ma, Y. Qin and Y.Z. Li: Appl. Phys. Lett Vol. 96 (2010), p.202.

Google Scholar

[6] J.G. Li, J.J. Huang, Y. Qin, F. Ma: Mat. Sci. Eng. B-Solid Vol. 138 (2007), p.199.

Google Scholar

[7] Y. Qin, F. Ma, F. Wang, D.S. Xue: Scripta. Mater Vol. 63 (2010), p.1145.

Google Scholar

[8] Y. Yang, C. Xu, Y. Xia, T. Wang, F. Li: J. Alloy. Compd Vol. 493 (2010), p.549.

Google Scholar

[9] X.W. Wei, G.X. Zhu, Y.J. Liu, Y.H. Ni, Y. Song, Z. Xu: Chem. Mater Vol. 20 (2008), p.6248.

Google Scholar

[10] J.R. Liu, M. Itoh and K. Machida: J. Alloy. Compd Vol. 408 (2006), p.1396.

Google Scholar

[11] D. Rousselle, A. Berthault, O. Acher, J.P. Bouchaud, P.G. Zerah: J. Appl. Phys Vol. 74 (1993), p.475.

Google Scholar

[12] S.S. Kim, S.T. Kim, Y.C. Yoon, K.S. Lee: J. Appl. Phys Vol. 97 (2005), p.905.

Google Scholar

[13] J.J. Huang, Y. Qin, J.G. Li, X.D. Jiang, F. Ma: J. Nanosci. Nanotechno Vol. 8 (2008), p.3967.

Google Scholar

[14] S.J. Park, S. Kim, S. Lee, G. Zheong, K. Char, T. Hyeon: J. Am. CheSoc Vol. 122 (2000), p.8581.

Google Scholar

[15] K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff: Nature Vol. 353 (1991), p.414.

Google Scholar

[16] R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner: J. Appl. Phys Vol. 89 (2001), p.6324.

Google Scholar