Electrocatalytic Oxidation of Hydroxylamine at Electro-Polymerized Poly(cobalt(II) tetraaminophthalocyanine)/Multi Walled Carbon Nanotubes Modified Electrode

Article Preview

Abstract:

This work describes the electrochemical deposition of poly(cobalt(II)-tetraaminophthalocyanine) (poly(CoIITAPc)) film onto a multi walled carbon nanotubes (MWNT) modified glassy carbon (GC) electrode (designated as poly(CoIITAPc)-MWNT-GC electrode) by cyclic voltammetric method and the effectiveness poly(CoIITAPc)-MWNT-GC electrode towards electrocatalytic oxidation of hydroxylamine. Cyclic voltammograms recorded during electropolymerization of cobalt(II) tetraaminophthalocyanine (CoIITAPc) indicated that good adherent layer of poly(CoIITAPc) was incorporated on to the surface of MWNT/GC electrode. The electrochemical detection of hydroxylamine was studied by amperometry at the new poly(CoIITAPc)-MWNT-GC electrode. The modified electrode exhibited good catalytic performance for the electrochemical oxidation of hydroxylamine with an anodic potential of 0.2 V, linear concentration range from 1.7 mmol/L to 0.20 mmol/Land a detection limit of 0.33 mmol/L.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Pages:

1347-1350

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.R. Zare, S.H. Hashemi and A. Benvidi: Anal. Chim. Acta Vol. 668 (2010), p.182.

Google Scholar

[2] P. Gross: Crit. Rev. Toxicol. Vol. 14 (1985), p.87.

Google Scholar

[3] K.B. Rao and G.G.Z. Rao: Anal. Chem. Vol. 64 (1942), p.731.

Google Scholar

[4] A. Afkhami, T. Madrakian and A. Maleki: Anal. Sci. Vol. 22 (2006), p.329.

Google Scholar

[5] B. Deepa, N. Balasubramanian and K.S. Nagaraja: Chem. Pharm. Bull. Vol. 52 (2004), p.1473.

Google Scholar

[6] W.D. Krote: J. Chromatogr. A Vol. 603 (1992), p.145.

Google Scholar

[7] J.P. Guzowski, C. Golanoski and E.R. Montgomery: J. Pharm. Biomed. Anal. Vol. 33 (2003), p.963.

Google Scholar

[8] D.R. Canterforf: Anal. Chim. Acta Vol. 98 (1978), p.205.

Google Scholar

[9] M.P.N. Bui, X.H. Pham and K.N. Han: Electrochem. Commun. Vol. 12 (2010), p.250.

Google Scholar

[10] C. Zhang, G. Wang and M. Liu: Electrochim. Acta Vol. 55 (2010), p.2835.

Google Scholar

[11] M. Trojanowicz: Trend. Anal. Chem. Vol. 25 (2006), p.480.

Google Scholar

[12] J. Li and X. Lin: Sensor. Actuat. B-Chem. Vol. 126 (2007), p.527.

Google Scholar

[13] J. Wnag, T. Golden and R. Li: Anal. Chem. Vol. 60 (1988), p.1642.

Google Scholar

[14] Y.H. Tse, P Janda and H. Lam: Anal. Chem. Vol. 67 (1995), p.981.

Google Scholar

[15] H. Li and T.F. Guarr: J. Chem. Soc. Chem. Commun. Vol. 13 (1989), p.832.

Google Scholar

[16] S. Griveau, J. Pavez and J.H. Zagal: J. Electroanal. Chem. Vol. 497 (2001), p.75.

Google Scholar

[17] R.R. Moore, C.E. Banks and R.G. Compton: Analyst Vol. 129 (2004), p.755.

Google Scholar

[18] D. Ragupathy, A.I. Gopalan and K.P. Lee: Sensor Actuat B-Chem. Vol. 143 (2010), p.696.

Google Scholar

[19] S. Komathi, A.I. Gopalan and K.P. Lee: Biosens. Bioelectron. Vol. 24 (2009), p.3131.

Google Scholar

[20] R.J. Chen, Y. Zhang, D. Wang and H. Dai: J. Am. Chem. Soc. Vol. 123 (2001), p.3838.

Google Scholar

[21] G.D.L. Torre, W. Blau and T. Torres: Nanotechnology Vol. 14 (2003), p.765.

Google Scholar