Electrochemical Property of Terbium Doped Tantalum Oxide Film Electrode

Article Preview

Abstract:

Terbium doped tantalum oxide (Tb-Ta2O5) particles were synthesized with a low hydrothermal method. The phase structure of Tb-Ta2O5 obtained was performed by X-ray diffraction (XRD). The result revealed that the terbium doped Ta2O5 belongs to orthorhombic crystal. The electrochemical property of methylene blue (MB) at Tb-Ta2O5 film electrode in 0.5 mol dm-3 KCl aqueous solution was investigated with cyclic voltgrammetry (CV). The CV result indicated that the electrochemical kinetics of MB was diffusion controlling at Tb-Ta2O5 film electrode. Tb dopping imporved the electrochemical property of Ta2O5 film electrode. Tb-Ta2O5 is used as a kind of electrode material which has some new potential applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Pages:

16-21

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhang and N. F. Hu, Cyclic Voltammetric Detection of Chemical DNA Damage Induced by Styrene Oxide in Natural deDNA Layer-by-layer Films using Methylene Blue as Electroactive Probe, Ealylectrochemistry Communications, Vol. 9, Jan. 2007, pp.35-41.

DOI: 10.1016/j.elecom.2006.08.032

Google Scholar

[2] X. S. Yang, X. Chen, X. Zhang, W. S. Yang and D. G. Evans, Intercalation of Methylene Blue into Layered Manganese Oxide and Application of the Resulting Materials in a Reagentless Hydrogen Peroxide Biosensor, Sensors and Actuators B: Chemical, Vol. 129, Feb. 2008, pp.784-789.

DOI: 10.1016/j.snb.2007.09.063

Google Scholar

[3] S. C. Xu, J. M. Zhang, C. C. Yao, Z. Dai, G. Zheng, B. Sun, W. Tong and L. Qi, DNA Electrochemical Biosensor with Methylene blue as Hybridization Indicator, Fine Chemicals (in Chinese), vol. 25, Dec. 2008, pp.1183-1186.

Google Scholar

[4] P. Arias, N. F. Ferreyra, G. A. Rivas and S. Bollo, Glassy Carbon Electrodes Modified with CNT Dispersed in Chitosan: Analytical Applications for Sensing DNA-Methylene Blue Interaction, Journal of Electroanalytical Chemistry, Vol. 634, Sep. 2009, pp.123-126.

DOI: 10.1016/j.jelechem.2009.07.022

Google Scholar

[5] M. Ortiz, A. Fragoso, P. J. Ortiz and C. K. Osullivan, Elucidation of the Mechanism of Single-stranded DNA Interaction with Methylene Blue. A Spectroscopic Approach, Journal of Photochemistry and Photobiology A: Chemistry, Dec. 2010, in press, Doi: 10. 1016/j. jphotochem. 2010. 11. 020.

DOI: 10.1016/j.jphotochem.2010.11.020

Google Scholar

[6] N. R. Jana and T. Pal, Redox Catalytic Property of Still-growing and Final Palladium Particles: A Comparative Study, Langmuir, Vol. 15, April 1999, pp.3458-3463, doi: 10. 1021/la981512i.

DOI: 10.1021/la981512i

Google Scholar

[7] Y. H. Zhao and K. Aoki, Transition from Heterogeneous Catalytic Reaction to Homogeneous One by Variation of Palladium Particles Size, Chemical Physics Letters, vol. 430 , Oct. 2006, pp.117-120, doi: 10. 1016/j. cplett. 2006. 08. 132.

DOI: 10.1016/j.cplett.2006.08.132

Google Scholar

[8] K. Aoki, Y. H. Zhao and J. Y. Chen, Colloidal Submicron-palladium Particles Stabilized with Acetate, Electrochimica Acta, Vol. 52, Feb. 2007, pp.2485-2491, doi: 10. 1016/j. electacta. 2006. 08. 057.

DOI: 10.1016/j.electacta.2006.08.057

Google Scholar

[9] T. Pal, S. De, N. R. Jana, N. Pradhan, R. mandal and A. Pal, Organized Media as Redox Catalysts, Langmuir, Vol. 14, Jul. 1998, pp.4724-4730, doi: 10. 1021/la980057n.

DOI: 10.1021/la980057n

Google Scholar

[10] Sh. Sohrabnezhad, A. Pourahmad, R. Rakhshaee, A. Radaee and S. Heidarian, Catalytic Reduction of Methylene Blue by Sulfide Ions in the Presence of NanoAIM-41 Material, Superlattices and Microstructures, Vol. 47, Mar. 2010, pp.411-421.

DOI: 10.1016/j.spmi.2009.12.006

Google Scholar

[11] N. Gupta, H. P. Singh and R. K. Sharma, Single-pot Synthesis: Plant Mediated Gold Nanoparticles Catalyzed Reduction of Methylene Blue in the Presence of Stannous Chloride, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 367, Sep. 2010, pp.102-107.

DOI: 10.1016/j.colsurfa.2010.06.022

Google Scholar

[12] M. Panizza, A. Barbucci, R. Ricotti and Giacomo Cerisola, Electrochemical Degradation of Methylene Blue, Separation and Purification Technology, Vol. 54, May 2007, p.382–387, doi: 10. 1016/j. seppur. 2006. 10. 010.

DOI: 10.1016/j.seppur.2006.10.010

Google Scholar

[13] V. Svetlicic, V. Zutic, J. Clavilier and J. Chevalet, Superamolecular Phenomena in Organic Redox Films at Electrodes: Part I. The Methylene Blue/ Leucomethylene Blue Redox Couple at the Platinum Electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 195, Nov. 1985, pp.307-319.

DOI: 10.1016/0022-0728(85)80051-6

Google Scholar

[14] V. Zutic, V. Svetlicic, J. Clavilier and J. Chevalet, Superamolecular phenomena in organic redox films at electrodes: Part II. The Methylene Blue/ Leucomethylene Blue Redox Couple at the Gold Electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 219, Mar. 1987, pp.183-195.

DOI: 10.1016/0022-0728(87)85039-8

Google Scholar

[15] T. Sagara and K. Niki, Surface Process and Adsorption States of Methylene Blue at Graphite Electrode Surfaces in an Acidic Medium: an Electroreflectance Study, Langmuir, Vol. 9, Mar. 1993, pp.831-838, doi: 10. 1021/la00027a037.

DOI: 10.1021/la00027a037

Google Scholar

[16] S. H. A. Nicolai, P. R. P. Rodrigues, S. M. L. Agostinho and J. C. Rubim, Electrochemical and Spectroelectrochemical (SERS) Studies of the Reduction of Methylene Blue on a Siliver Electrode, Journal Electroanalytical Chemistry, Vol. 527, May 2002, pp.103-111.

DOI: 10.1016/s0022-0728(02)00832-x

Google Scholar

[17] J. W. Schultze and L. Elfethal, Electron-transfer Reactions on Pure and Modified Oxide Films, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 204, Jun. 1986, pp.153-171, doi: 10. 1016/0022-0728(86)80515-0.

DOI: 10.1016/0022-0728(86)80515-0

Google Scholar

[18] G. D. Wilk, R. M. Wallace and J. M. Anthony, High-k Gate Dielectrics: Current Status and Materials Properties Considerations, Joural of Applied Physics, Vol. 89, May 2001, pp.5243-5275, doi: 10. 1063/1. 1361065.

DOI: 10.1063/1.1361065

Google Scholar

[19] G. Aygun and R. Turan, Electrical and Dielectrical Properties of Tantalum Oxide Films Grown by Nd: YAG Laser Assisted Oxidation, Thin Solid Films, Vol. 517, Nov. 2008, pp.994-999, doi: 10. 1016/j. tsf. 2008. 07. 039.

DOI: 10.1016/j.tsf.2008.07.039

Google Scholar

[20] Y. H. Zhao and W. Y. Wang, The Study on the Electrochemical Property of La Dope Ta2O5 Membrane Electrode, The 60th Annual Meeting of the International Society of Electrochemistry, Aug. 2009, pp. S11-018.

Google Scholar

[21] Y. H. Zhao, W. Y. Wang, Q. Y. Jia, Y. Gao, X. J. Wang and Y. G. Su, Electrochemical Property of La Doped Ta2O5 Film Electrode, Acta Scientiarum Naturalium Universitatis NeiMongol, Vol. 41, April 2010, pp.307-312.

Google Scholar