Quantum Three-Qubit Phase Gate Operation by Using an Artificial Atom in a Three-Mode Cavity

Article Preview

Abstract:

We propose a scheme for realizing quantum three-qubit phase gate operation, in a three-mode cavity where the large detuned cavity-mode fields interact with the four-level artificial atom of an rf-SQUID in tripod-type configuration. In this scheme, the two lowest levels of the artificial atom represent the two logical states of the target qubit and two cavity-mode states are the control qubits, while the third cavity-mode field serves the gate manipulation. Since only the metastable lower levels are involved in the gate operations, the gate is insensitive to the decay rates of the artificial atom, which makes this scheme advantageous and it is important in view of decoherence.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Pages:

1705-1709

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Majer, F.G. Paauw, A.C.J. terHaar, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 94 (2005) 090501.

Google Scholar

[2] Y. Yu, S. Han, X. Chu, S. -I. Chu, Z. Wang, Science 296 (2002) 889.

Google Scholar

[3] I. Chiorescu, Y. Nakamura, C.J.P. M. Harmans, J.E. Mooij, Science 299 (2003) 1869.

Google Scholar

[4] S. Han, R. Rouse, J.E. Lukens, Phys. Rev. Lett. 76 (1996) 3404.

Google Scholar

[5] J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Nature 406 (2000) 43.

Google Scholar

[6] C.P. Yang, S. Han, e-print quant-ph/0511206.

Google Scholar

[7] J. Zhang, W. Liu, Z. Deng, Z. Lu, G.L. Long, J. Opt. B: Quantum Semiclass. Opt. 7 (2005) 22.

Google Scholar

[8] A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69 (2004) 062320.

Google Scholar

[9] C.P. Yang, S. -I. Chu, S. Han, Phys. Rev. Lett. 92 (2004) 117902.

Google Scholar

[10] L.I. Childress, A.S. Sorensen, M.D. Lukin, e-print quant-ph/0309106.

Google Scholar

[11] A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature (London) 431 (2004) 162.

DOI: 10.1038/nature02851

Google Scholar

[12] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Nature (London) 432 (2004) 200.

DOI: 10.1038/nature03119

Google Scholar

[13] J.P. Reithmaier, G. Sk, A. Lffer, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Nature (London) 432 (2004) 197.

DOI: 10.1038/nature02969

Google Scholar

[14] A. Badolato, K. Hennessy, M. Atatre, J. Dreiser, E. Hu, P.M. Petroff, A. Imamoglu, Science 308 (2005) 1158.

Google Scholar

[15] C.P. Yang, S. Han, Phys. Rev. A 72 (2005) 032311.

Google Scholar

[16] A. Joshi, M. Xiao, Phys. Rev. A 74 (2006) 052318.

Google Scholar

[17] C.P. Yang, S.I. Chu, S. Han, Phys. Rev. Lett. 92 (2004) 117902.

Google Scholar

[18] S.L. Zhu, Z.D. Wang, P. Zanardi, e-print quant-ph/0403004.

Google Scholar

[19] L.M. Narducci, W.E. Eidson, P. Furcinitti, D.C. Eteson, Phys. Rev. A 16 (1977) 1665.

DOI: 10.1103/physreva.16.1665

Google Scholar

[20] A. Biswas, G.S. Agarwal, Phys. Rev. A 69 (2004) 062306.

Google Scholar